Skip to main content
Log in

Thermal, structural and optical properties of TeO2–Na2O–TiO2 glassy system

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, 80TeO2–(20 − x) Na2O–xTiO2 (x = 0, 5, 10 and 20) mol% glasses by melting quenching technique were obtained. Density (ρ) and molar volume (Vm) of these glasses have been investigated. The characterization was performed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) and ultraviolet–visible (UV–Vis) spectroscopy. As expected, the Vm values decreased with x increasing, exhibiting a density opposite behavior. DSC, FTIR and UV–Vis results indicated that, with the increasing the TiO2 content, the role of this oxide changes from network modifier to former. In addition, more covalent bonds are formed, reinforcing the network connectivity by increasing the Te–O–Ti inter-chain bounds. These features improved the glassy system thermal and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Bürger, W. Vogel, V. Kozhukharov, IR transmission and properties of glasses in the TeO2–RnOm, RnXm, Rn (SO4) m, Rn (PO3) mandB2O3] systems. Infrared Phys. 25, 395–409 (1985)

    Article  Google Scholar 

  2. J.S. Wang, E.M. Vogel, E. Snitzer, Tellurite glass: a new candidate for fiber devices. Opt. Mater. (Amst) 3, 187–203 (1994)

    Article  CAS  Google Scholar 

  3. J. Heo, D. Lam, G.H. Sigel Jr., E.A. Mendoza, D.A. Hensley, Spectroscopic analysis of the structure and properties of alkali tellurite glasses. J. Am. Ceram. Soc. 75, 277–281 (1992)

    Article  CAS  Google Scholar 

  4. F. Chen, T. Xu, S. Dai, Q. Nie, X. Shen, J. Zhang, X. Wang, Linear and non-linear characteristics of tellurite glasses within TeO2–Bi2O3–TiO2 ternary system. Opt. Mater. (Amst) 32, 868–872 (2010)

    Article  CAS  Google Scholar 

  5. H. Takebe, S. Pujino, K. Morinaga, Refractive-index dispersion of tellurite glasses in the region from 0.40 to 1.71 μm. J. Am. Ceram. Soc. 77, 2455–2457 (1994)

    Article  CAS  Google Scholar 

  6. M. Udovic, P. Thomas, A. Mirgorodsky, O. Durand, M. Soulis, O. Masson, T. Merle-Méjean, J.-C. Champarnaud-Mesjard, Thermal characteristics, Raman spectra and structural properties of new tellurite glasses within the Bi2O3–TiO2–TeO2 system. J. Solid State Chem. 179, 3252–3259 (2006)

    Article  CAS  Google Scholar 

  7. N. Boubata, A. Roula, I. Moussaoui, Thermodynamic and relative approach to compute glass-forming ability of oxides. Bull. Mater. Sci. 36, 457–460 (2013)

    Article  CAS  Google Scholar 

  8. S. Manning, H. Ebendorff-Heidepriem, T.M. Monro, Ternary tellurite glasses for the fabrication of nonlinear optical fibres. Opt. Mater. Express. 2, 140–152 (2012)

    Article  CAS  Google Scholar 

  9. P.T. Sarjeant, R. Roy, New glassy and polymorphic oxide phases using rapid quenching techniques. J. Am. Ceram. Soc. 50, 500–503 (1967)

    Article  CAS  Google Scholar 

  10. R. El-Mallawany, The optical properties of tellurite glasses. J. Appl. Phys. 72, 1774–1777 (1992)

    Article  CAS  Google Scholar 

  11. N. Mochida, K. Takahashi, K. Nakata, S. Shibusawa, Properties and structure of the binary tellurite glasses containing mono-and di-valent cations. J. Ceram. Assoc. Jpn. 86, 317–326 (1978)

    Article  Google Scholar 

  12. H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, S. Neov, Glass formation, properties and structure of glasses in the TeO2–ZnO system. J. Non. Cryst. Solids. 151, 134–142 (1992)

    Article  Google Scholar 

  13. D. Souri, Y. Shahmoradi, Calorimetric analysis of non-crystalline TeO2–V2O5–Sb2O3. J. Therm. Anal. Calorim. 129, 601–607 (2017)

    Article  CAS  Google Scholar 

  14. T. Sekiya, N. Mochida, A. Ohtsuka, M. Tonokawa, Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses. J. Non. Cryst. Solids. 144, 128–144 (1992)

    Article  CAS  Google Scholar 

  15. T. Nishida, S. Saruwatari, Y. Takashima, Structural study of Na2O–TeO2 glasses by Mössbauer spectroscopy and differential thermal analysis. Bull. Chem. Soc. Jpn 61, 4093–4097 (1988)

    Article  CAS  Google Scholar 

  16. Y. Himei, A. Osaka, T. Nanba, Y. Miura, Coordination change of Te atoms in binary tellurite glasses. J. Non. Cryst. Solids. 177, 164–169 (1994)

    Article  CAS  Google Scholar 

  17. T. Hayakawa, M. Koduka, M. Nogami, J.R. Duclère, A.P. Mirgorodsky, P. Thomas, Metal oxide doping effects on Raman spectra and third-order nonlinear susceptibilities of thallium–tellurite glasses. Scr. Mater. 62, 806–809 (2010)

    Article  CAS  Google Scholar 

  18. M. Soulis, A.P. Mirgorodsky, T. Merle-Méjean, O. Masson, P. Thomas, M. Udovic, The role of modifier’s cation valence in structural properties of TeO2-based glasses. J. Non. Cryst. Solids. 354, 143–149 (2008)

    Article  CAS  Google Scholar 

  19. S.M. Lima, W.F. Falco, E.S. Bannwart, L.H. Andrade, R.C. Oliveira, J.C.S. Moraes, K. Yukimitu, E.B. Araújo, E.A. Falcão, A. Steimacher et al., Thermo-optical characterization of tellurite glasses by thermal lens, thermal relaxation calorimetry and interferometric methods. J. Non. Cryst. Solids. 352, 3603–3607 (2006)

    Article  CAS  Google Scholar 

  20. H. Nasu, O. Matsushita, K. Kamiya, H. Kobayashi, K. Kubodera, Third harmonic generation from Li2O–TiO2–TeO2 glasses. J. Non. Cryst. Solids. 124, 275–277 (1990)

    Article  CAS  Google Scholar 

  21. W.A. Capanema, K. Yukimitu, J.C.S. Moraes, F.A. Santos, M.S. Figueiredo, S.M. Sidel, V.C.S. Reynoso, O.A. Sakai, A.N. Medina, The structure and optical dispersion of the refractive index of tellurite glass. Opt. Mater. (Amst) 33, 1569–1572 (2011)

    Article  CAS  Google Scholar 

  22. W. Stambouli, H. Elhouichet, M. Ferid, Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition. J. Mol. Struct. 1028, 39–43 (2012)

    Article  CAS  Google Scholar 

  23. K.B. Kavaklioğlu, S. Aydin, M. Çelikbilek, A.E. Ersundu, The TeO2–Na2O system: thermal behavior, structural properties, and phase equilibria. Int. J. Appl. Glas. Sci. 6, 406–418 (2015). https://doi.org/10.1111/ijag.12103

    Article  CAS  Google Scholar 

  24. G. Jayasinghe, D. Coppo, P. Bandaranayake, J.L. Souquet, Electrical properties of TeO2 glasses with Na2O as network modifier. Solid State Ionics 76, 297–300 (1995)

    Article  CAS  Google Scholar 

  25. A. Bachvarova-Nedelcheva, R. Iordanova, S. Ganev, Y. Dimitriev, Glass formation and structural studies of glasses in the TeO2–ZnO–Bi2O3–Nb2O5 system. J. Non. Cryst. Solids. 503, 224–231 (2019)

    Article  Google Scholar 

  26. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Met. 45, 219–250 (2010)

    CAS  Google Scholar 

  27. I. Shaltout, Crystallization kinetics and structure of (TeO2–TiO2–Fe2O3) glasses. J. Mater. Sci. 35, 323–329 (2000)

    Article  CAS  Google Scholar 

  28. N. Elkhoshkhany, R. El-Mallawany, E. Syala, Mechanical and thermal properties of TeO2–Bi2O3–V2O5–Na2O–TiO2 glass system. Ceram. Int. 42, 19218–19224 (2016)

    Article  CAS  Google Scholar 

  29. A.F. Kozmidis-Petrović, Theoretical analysis of relative changes of the Hruby, Weinberg, and Lu–Liu glass stability parameters with application on some oxide and chalcogenide glasses. Thermochim. Acta 499, 54–60 (2010)

    Article  Google Scholar 

  30. A.F. Kozmidis-Petrović, Sensitivity of the Hruby, Lu–Liu, Fan, Yuan, and Long glass stability parameters to the change of the ratios of characteristic temperatures Tx/Tg and Tm/Tg. Thermochim. Acta 510, 137–143 (2010)

    Article  Google Scholar 

  31. F. Chen, Q. Yu, B. Qiao, S. Dai, Q. Zhang, Influence of TiO2 on thermal stability and crystallization kinetics of tellurite glasses within TeO2–Bi2O3–Nb2O5 pseudo-ternary system. J. Non. Cryst. Solids. 404, 32–36 (2014)

    Article  CAS  Google Scholar 

  32. E. Idalgo, E.B. Araújo, K. Yukimitu, J.C.S. Moraes, V.C.S. Reynoso, C.L. Carvalho, Effects of the particle size and nucleation temperature on tellurite 20Li2O–80TeO2 glass crystallization. Mater. Sci. Eng., A 434, 13–18 (2006)

    Article  Google Scholar 

  33. M.C. Weinberg, Assessment of glass stability criteria. Phys. Chem. Glas. 35, 119–123 (1994)

    CAS  Google Scholar 

  34. J.-C. Sabadel, P. Armand, P.-E. Lippens, D. Cachau-Herreillat, E. Philippot, Mössbauer and XANES of TeO2–BaO–TiO2 glasses. J. Non Cryst. Solids. 244, 143–150 (1999)

    Article  CAS  Google Scholar 

  35. M. Çelikbilek, A. Erçin Ersundu, S. Aydin, Glass formation and characterization studies in the TeO2–WO3–Na2O System. J. Am. Ceram. Soc. 96, 1470–1476 (2013)

    Article  Google Scholar 

  36. I.N. Sapian, M.I.M. Yusof, A.K. Yahya, Elastic and structural properties of (95–x) TeO2-5La2O3-xTiO2 lanthanum tellurite glass system. Chalcogenide Lett. 11, 10 (2014)

    Google Scholar 

  37. S.Q. Mawlud, M.M. Ameena, M.R. Sahar, Z.A.S. Mahraz, K.F. Ahmed, Thermal stability and Judd-Ofelt analysis of optical properties of Sm3 + -doped sodium tellurite glasses, in: AIP Conf. Proc., 2017: p. 20032

  38. Y. Dimitriev, V. Dimitrov, M. Arnaudov, IR spectra and structures of tellurite glasses. J. Mater. Sci. 18, 1353–1358 (1983)

    Article  CAS  Google Scholar 

  39. M.A. Villegas, J.M.F. Navarro, Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system. J. Eur. Ceram. Soc. 27, 2715–2723 (2007)

    Article  CAS  Google Scholar 

  40. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970)

    Article  CAS  Google Scholar 

  41. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  42. M. Nowak, B. Kauch, P. Szperlich, Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 80, 46107 (2009)

    Article  CAS  Google Scholar 

  43. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)

    Article  CAS  Google Scholar 

  44. V. Dimitrov, T. Komatsu, Classification of oxide glasses: a polarizability approach. J. Solid State Chem. 178, 831–846 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to FINEP, CAPES, CNPQ and Fundação Araucária for the partial financial support. To LABMU-UEPG for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaqueline Valeski Gunha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunha, J.V., Gonçalves, A., Somer, A. et al. Thermal, structural and optical properties of TeO2–Na2O–TiO2 glassy system. J Mater Sci: Mater Electron 30, 16695–16701 (2019). https://doi.org/10.1007/s10854-019-01496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01496-6

Navigation