Skip to main content
Log in

Influence of quenching rate and quenching media on formation of TeO2 glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present investigation, the formation of tellurite (TeO2) glass system was studied without using any external network former & modifier and systematically analyzed by varying the quenching-cooling media. Five samples using TeO2 melt were prepared employing the different quenching media such as mold at 200 °C, at room temperature, at ice slab, in ice water, and direct in ice slab abbreviated as G1, G2, G3, G4, and G5, respectively. Structural, thermal, optical and electrical properties were studied in order to understand their physical behavior. These samples were found dense enough which manifest the compactness and network rigidity of the structure. X-ray diffractograms confirmed the pure glass (amorphous) phase for sample G5, whereas an amorphous structure with some crystalline phases was observed for other samples. Elemental confinement and oxidation state of tellurium was verified by XPS analysis of the samples. An increase in crystallization temperature (Tc) and considerable shifting in the glass transition temperature (Tg) were observed with the increase in quenching temperature. Optical studies suggested the presence of both direct and indirect allowed transitions in the synthesized samples. All samples were also found to possess high refractive index values (> 2). FTIR and Raman studies confirmed the bonding of the glass and semicrystalline-glass samples and corroborated with the experimental findings. The factors responsible for the formation of glass and crystalline glasses of TeO2 were pointed out and discussed in detail. A correlation between the structural changes and the physical characteristics of all TeO2 glass and crystalline-glass samples has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Pan, A. Ghosh, Phys. Rev. B-Condens. Matter Mater. Phys. 60, 3224 (1999)

    Article  CAS  Google Scholar 

  2. H. Takebe, S. Pujino, K. Morinaga, J. Am. Ceram. Soc. 77, 2455 (1994)

    Article  CAS  Google Scholar 

  3. B. Ferreira, E. Fargin, B. Guillaume, G. Le. Flem, V. Rodriguez, M. Couzi, T. Buffeteau, L. Canioni, L. Sarger, G. Martinelli, Y. Quiquempois, H. Zeghlache, L. Carpentier, J. Non. Cryst. Solids 332, 207 (2003)

    Article  CAS  Google Scholar 

  4. N. Berka\"\ine, E. Orhan, O. Masson, P. Thomas, J. Junquera, Phys. Rev. B 83, 245205 (2011).

  5. P.A. Thomas, J. Phys. C Solid State Phys. 21, 4611 (1988)

    Article  CAS  Google Scholar 

  6. J.E. Stanworth, Nature 169, 581 (1952)

    Article  CAS  Google Scholar 

  7. S. Sakida, S. Hayakawa, T. Yoko, J. Am. Ceram. Soc. 84, 836 (2001)

    Article  CAS  Google Scholar 

  8. S. Sakida, S. Hayakawa, T. Yoko 42, 836 (2001)

    Google Scholar 

  9. G. W. Brady, 300, (1994).

  10. Y. Li, W. Fan, S. Honggang, X. Cheng, P. Li, X. Zhao, J. Appl. Phys. 107, 93506 (2010)

    Article  CAS  Google Scholar 

  11. J.P. Poley, Nature 174, 268 (1954)

    Article  CAS  Google Scholar 

  12. N. Elkhoshkhany, S.Y. Marzouk, M.A. Khattab, S.A. Dessouki, Mater. Charact. 144, 274 (2018)

    Article  CAS  Google Scholar 

  13. A.K. Yadav, P. Singh, RSC Adv. 5, 67583 (2015)

    Article  CAS  Google Scholar 

  14. R. A. H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data (CRC press, 2011).

  15. A.K. Yadav, P.A. Jha, P. Singh, J. Mater. Sci. Mater. Electron. 28, 7419 (2017)

    Article  CAS  Google Scholar 

  16. R. Kumar, A.K. Bhatnagar, J. Alloys Compd. 623, 49 (2015)

    Article  CAS  Google Scholar 

  17. S. Moufok, L. Kadi, B. Amrani, and K. D. Khodja, Results Phys. 13, 102315 (2019).

  18. S. Ghosh and A. Ghosh, J. Chem. Phys. 126, (2007).

  19. J.C. Champarnaud-Mesjard, S. Blanchandin, P. Thomas, A. Mirgorodsky, T. Merle-Méjean, B. Frit, J. Phys. Chem. Solids 61, 1499 (2000)

    Article  CAS  Google Scholar 

  20. R.K. Ramamoorthy, A.K. Bhatnagar, J. Alloys Compd. 623, 49 (2015)

    Article  CAS  Google Scholar 

  21. M. Ceriotti, F. Pietrucci, M. Bernasconi, (n.d.).

  22. B.R. Sahu, L. Kleinman, Phys. Rev. B 69, 193101 (2004)

    Article  CAS  Google Scholar 

  23. E. Menéndez-Proupin, G. Gutiérrez, E. Palmero, J.L. Peña, Phys. Rev. B 70, 35112 (2004)

    Article  CAS  Google Scholar 

  24. M. Marple, M. Jesuit, I. Hung, Z. Gan, S. Feller, S. Sen, J. Non. Cryst. Solids 513, 183 (2019)

    Article  CAS  Google Scholar 

  25. A.K. Yadav, P.A. Jha, S. Murugavel, P. Singh, Solid State Ionics 296, 54 (2016)

    Article  CAS  Google Scholar 

  26. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, J. Mater. Sci. Mater. Electron. 28, 14446 (2017)

    Article  CAS  Google Scholar 

  27. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, J. Mater. Sci. Mater. Electron. 28, 14855 (2017)

    Article  CAS  Google Scholar 

  28. S. Hoseinzadeh, A.H. Ramezani, J Nanostruct 9, 276 (2019)

    CAS  Google Scholar 

  29. V. Rodriguez, M. Couzi, F. Adamietz, M. Dussauze, G. Guery, T. Cardinal, P. Veber, K. Richardson, P. Thomas, J. Raman Spectrosc. 44, 739 (2013)

    Article  CAS  Google Scholar 

  30. M. N. Garaga, U. Werner-zwanziger, J. Wilson, A. Deceanne, B. Hauke, K. Bozer, S. Feller, (2017).

  31. L. Červinka, J. Dusil, J. Non. Cryst. Solids 21, 125 (1976)

    Article  Google Scholar 

  32. A. Gualtieri, GSAS Tutorials Examples 748, (2003).

  33. I.C. Madsen, N.V.Y. Scarlett, A. Kern, Zeitschrift Fur Krist. 226, 944 (2011)

    Article  CAS  Google Scholar 

  34. R. El-Mallawany, Mater. Chem. Phys. 53, 93 (1998)

    Article  CAS  Google Scholar 

  35. Y. Wang, S. Dai, F. Chen, T. Xu, Q. Nie, Mater. Chem. Phys. 113, 407 (2009)

    Article  CAS  Google Scholar 

  36. M. El-Hagary, M. Emam-Ismail, E.R. Shaaban, A. El-Taher, Radiat. Phys. Chem. 81, 1572 (2012)

    Article  CAS  Google Scholar 

  37. A.S. Hassanien, A.A. Akl, Superlattices Microstruct. 89, 153 (2016)

    Article  CAS  Google Scholar 

  38. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  39. H. Rawson, Properties and Applications of Glass (Elsevier Science & Technology, 1980).

  40. M. Vithal, P. Nachimuthu, T. Banu, R. Jagannathan, J. Appl. Phys. 81, 7922 (1997)

    Article  CAS  Google Scholar 

  41. E.A. Davis, N.F. Mott, Philos. Mag. A J. Theor. Exp. Appl. Phys. 22, 903 (1970)

    CAS  Google Scholar 

  42. A. Jha, S. Shen, M. Naftaly, Phys. Rev. B Condens. Matter Mater. Phys. 62, 6215 (2000)

    Article  CAS  Google Scholar 

  43. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)

    Article  CAS  Google Scholar 

  44. R. El-Mallawany, J. Appl. Phys. 72, 1774 (1992)

    Article  CAS  Google Scholar 

  45. J.A. Duffy, J. Solid State Chem. 62, 145 (1986)

    Article  CAS  Google Scholar 

  46. A.G. Kalampounias, G. Tsilomelekis, S. Boghosian, J. Chem. Phys. 142, 154503 (2015)

    Article  CAS  Google Scholar 

  47. M. Ceriotti, F. Pietrucci, M. Bernasconi, Phys. Rev. B Condens. Matter Mater. Phys. 73, 1 (2006)

    Article  CAS  Google Scholar 

  48. P. Charton, L. Gengembre, P. Armand, J. Solid State Chem. 168, 175 (2002)

    Article  CAS  Google Scholar 

  49. Y. Himei, Y. Miura, T. Nanba, A. Osaka, J. Non. Cryst. Solids 211, 64 (1997)

    Article  CAS  Google Scholar 

  50. R.A. El-Mallawany, Infrared Phys. 29, 781 (1989)

    Article  CAS  Google Scholar 

  51. H. Mohamed-Kamari, H.M. Oo, W.M.D. Wan-Yusoff, Int. J. Mol. Sci. 13, 4623 (2012)

    Article  CAS  Google Scholar 

  52. P. Singh, B.P. Singh, Raghvendra, Solid State Ion. 227, 39 (2012)

    Article  CAS  Google Scholar 

  53. P. Thomas and K. Varma, J. Adv. Dielectr. 02, (2013).

  54. R.N. Hampton, W. Hong, G. Saunders, R.A. Elmallawany, J. Non-Crystalline Solids J - Non-Cryst Solids 94, 307 (1987)

    Article  CAS  Google Scholar 

  55. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (2003).

  56. A.K. Yadav, P. Singh, J. Mater. Sci. Mater. Electron. 26, 9443 (2015)

    Article  CAS  Google Scholar 

  57. R.A. El-Mallawany, L.M. Sharaf El-Deen, M.M. Elkholy, J. Mater. Sci. 31, 6339 (1996)

    Article  CAS  Google Scholar 

  58. M. Prashant Kumar, T. Sankarappa, B. Vijaya Kumar, N. Nagaraja, Solid State Sci. 11, 214 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the CSIR, New Delhi, for project No. 03(1402)/17/EMR-II for financial support. We are thankful to DST-FIST (SR/FST/PSI-203/215(C)) for providing the departmental funding. One of the authors, VT, Acknowledges the support of Dr. Pradeep Kumar for his help in sample preparation. The authors are thankful to Dr. Saral Kr. Gupta, Banasthali Vidyapith for helping in Raman measurements. The authors are also thankful to the Central Instrumentation Facility Centre (CIFC) IIT (BHU), Varanasi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raghvendra Pandey or Prabhakar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, V., Pandey, R. & Singh, P. Influence of quenching rate and quenching media on formation of TeO2 glasses. J Mater Sci: Mater Electron 32, 17726–17740 (2021). https://doi.org/10.1007/s10854-021-06309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06309-3

Navigation