Skip to main content
Log in

Effect of powder characteristics on the thermal conductivity and mechanical properties of Si3N4 ceramics sintered by Spark plasma sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of powder characteristics on the thermal conductivity and mechanical properties of silicon nitride (Si3N4) ceramics were investigated systematically by using two α-Si3N4 powders as raw materials and using MgSiN2 or MgO + Y2O3 as sintering additives. The Si3N4 ceramics with a higher density were obtained by α-Si3N4 powders with lower oxygen content and impurities and using none-oxide sintering additive MgSiN2. The α–β phase transformation completely taken place in all the specimen at 1750 °C. The specimens sintered by powders with lower levels of oxygen and impurities show higher mechanical properties than other specimens. The Y2O3 and MgO sintering additives lead to higher flexural strength and fracture toughness than MgSiN2. The Vickers’ hardness is just the opposite. The thermal conductivity value of powders with lower oxygen content is higher than that of the materials prepared by the other type of powder at the same conditions. The effects of the Si3N4 particle size, native oxygen and impurities on the thermal conductivity of resultant materials were discussed in detail. This work demonstrates that the improvement in thermal conductivity of Si3N4 can be obtained by using none-oxide sintering additive MgSiN2 and the Si3N4 powder with lower oxygen content, and impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.R. Eddy Jr., D.K. Gaskill, Science 324, 1398 (2009)

    Article  Google Scholar 

  2. K. Hirao, Y. Zhou, H. Hyuga, T. Ohji, D. Kusano, J. Korean Ceram. Soc. 49, 380 (2012)

    Article  Google Scholar 

  3. Y. Zhou, H. Hyuga, D. Kusano, Y.i. Yoshizawa, T. Ohji, K. Hirao, J. Asian Ceram. Soc. 3, 221 (2018)

    Article  Google Scholar 

  4. T. Osaka, H. Nagata, E. Nakajima, I. Koiwa, K. Utsumi, J. Electrochem. Soc. 133, 2345 (1986)

    Article  Google Scholar 

  5. N. Kuramoto, H. Taniguchi, I. Aso, IEEE. Trans. Compon. Hybrids, Manuf. Technol. 9, 386 (1986)

    Article  Google Scholar 

  6. A.F. Jünior, D.J. Shanafield, J. Mater. Sci. Mater. Electron. 50, 247 (2004)

    Google Scholar 

  7. Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, K. Hirao, Adv. Mater. 23, 4563 (2011)

    Article  Google Scholar 

  8. C. Matsunaga, Y. Zhou, D. Kusano, H. Hyuga, K. Hirao, Int. J. Appl. Ceram. Technol. 14, 1157 (2017)

    Article  Google Scholar 

  9. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, IEEE. Trans. Compon. Hybrids, Manuf. Technol. 13, 313 (1990)

    Article  Google Scholar 

  10. Z. Shen, Z. Zhao, H. Peng, M. Nygren, Nature 417, 266 (2002)

    Article  Google Scholar 

  11. H. Reveron, L. Blanchard, Y. Vitupier, E. Rivière, G. Bonnefont, G. Fantozzi, J. Eur. Ceram. Soc. 31, 645 (2011)

    Article  Google Scholar 

  12. W. Han, Y. Li, G. Chen, Q. Yang, Mater. Sci. Eng. A 700, 19 (2017)

    Article  Google Scholar 

  13. X. Zhou, Y. Zhou, K. Hirao, Z. Lenčéš, J. Am. Ceram. Soc. 89, 3331 (2010)

    Article  Google Scholar 

  14. H. Liang, Y. Zeng, K. Zuo, Y. Xia, D. Yao, J. Yin, Ceram. Int. 42, 15679 (2016)

    Article  Google Scholar 

  15. H. Buhr, G. Müller, H. Wiggers, F. Aldinger, P. Foley, A. Roosen, J. Am. Ceram. Soc. 74, 718 (2010)

    Article  Google Scholar 

  16. M. Kitayama, K. Hirao, A. Tsuge, K. Watari, M. Toriyama, S. Kanzaki, J. Am. Ceram. Soc. 83, 1985 (2000)

    Article  Google Scholar 

  17. M. Kitayama, K. Hirao, A. Tsuge, M. Toriyama, S. Kanzaki, J. Am. Ceram. Soc. 82, 3263 (2010)

    Article  Google Scholar 

  18. M. Kitayama, K. Hirao, K. Watari, M. Toriyama, S. Kanzaki, J. Am. Ceram. Soc. 32, 353 (2010)

    Google Scholar 

  19. K. Hirao, Y. Zhou, H. Hyuga, T. Ohji, K. Dai, MRS Bull. 26, 451 (2001)

    Article  Google Scholar 

  20. X. Zhu, H. Hayashi, Y. Zhou, K. Hirao, J. Mater. Res. 19, 3270 (2011)

    Article  Google Scholar 

  21. X. Zhu, Y. Zhou, K. Hirao, Z. Lenčéš, J. Am. Ceram. Soc. 90, 1684 (2010)

    Article  Google Scholar 

  22. X. Zhu, Y. Sakka, Y. Zhou, K. Hirao, Acta. Mater. 55, 5581 (2007)

    Article  Google Scholar 

  23. X. Zhu, Y. Zhou, K. Hirao, J. Am. Ceram. Soc. 87, 1398 (2010)

    Article  Google Scholar 

  24. X.W. Zhu, Y. Sakka, Y. Zhou, K. Hirao, J. Ceram. Soc. Jpn. 116, 706 (2008)

    Article  Google Scholar 

  25. M. Kitayama, K. Hirao, A. Tsuge, K. Watari, M. Toriyama, S. Kanzaki, J. Am. Ceram. Soc. 83, 1985 (2010)

    Article  Google Scholar 

  26. H.M. Lee, E.B. Lee, L.K. Dong, D.K. Kim, Ceram. Int. 42, 17466 (2016)

    Article  Google Scholar 

  27. G.H. Peng, M. Liang, Z.H. Liang, Q.Y. Li, W.L. Li, Q. Liu, J. Am. Ceram. Soc. 92, 2122 (2009)

    Article  Google Scholar 

  28. H. Hayashi, K. Hirao, M. Toriyama, S. Kanzaki, K. Itatani, J. Am. Ceram. Soc. 84, 3060 (2002)

    Article  Google Scholar 

  29. S.Y. Yoon, T. Akatsu, E. Yasuda, J. Mater. Res. 11, 120 (1996)

    Article  Google Scholar 

  30. I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto, M. Koizumi, J. Am. Ceram. Soc. 72, 1656 (1989)

    Article  Google Scholar 

  31. S.K. Biswas, F.L. Riley, Mater. Chem. Phys. 67, 175 (2001)

    Article  Google Scholar 

  32. Z.K. Huang, A. Rosenflanz, I.W. Chen, J. Am. Ceram. Soc. 80, 1256 (2010)

    Article  Google Scholar 

  33. M. Belmonte, J. González-Julián, P. Miranzo, M.I. Osendi, J. Eur. Ceram. Soc. 30, 2937 (2010)

    Article  Google Scholar 

  34. K. Jeong, J. Tatami, M. Iijima, T. Nishimura, Adv. Powder. Technol. 28, 37 (2016)

    Article  Google Scholar 

  35. J. Wan, R.G. Duan, A.K. Mukherjee, Scr. Mater. 53, 663 (2005)

    Article  Google Scholar 

  36. Z.H. Wang, B. Bai, X.S. Ning, Adv. Appl. Ceram. 113, 173 (2014)

    Article  Google Scholar 

  37. X. Lu, X.S. Ning, W. Xu, H.P. Zhou, K.X. Chen, Key. Eng. Mat. 280283, 1259 (2005)

    Google Scholar 

  38. G.H. Peng, M. Liang, Z.H. Liang, Q.Y. Li, W.L. Li, Q. Liu, J. Am. Ceram. Soc. 92, 2122 (2010)

    Article  Google Scholar 

  39. X.L. Liu, M.M. Peng, X.S. Ning, Y. Takahashi, Key. Eng. Mat. 655, 11 (2015)

    Article  Google Scholar 

  40. Z.R. Jia, Z.G. Gao, D. Lan, Y.H. Cheng, G.L. Wu, H.J. Wu, Chin. Phys. B 27, 117806 (2018)

    Article  Google Scholar 

  41. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Powder. Technol. 333, 153 (2018)

    Article  Google Scholar 

  42. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677 (2015)

    Article  Google Scholar 

  43. H. Wu, G. Wu, L. Wang, Powder. Technol. 269, 443 (2015)

    Article  Google Scholar 

  44. Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, H. Wu, J. Mater. Sci. Mater. Electron. 29, 17122 (2018)

    Article  Google Scholar 

  45. G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Appl. Surf. Sci. 464, 472 (2019)

    Article  Google Scholar 

  46. G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, J. Colloid. Interface Sci. 536, 548 (2019)

    Article  Google Scholar 

  47. J. Li, J. Ma, S. Chen, J. He, Y. Huang, Food Hydrocoll. 82, 363 (2018)

    Article  Google Scholar 

  48. M. Cai, J. Zhu, C. Yang, R. Gao, C. Shi, J. Zhao, Polymers 11, 185 (2019)

    Article  Google Scholar 

  49. M. Ma, Y. Yang, W. Li, R. Feng, Z. Li, P. Lyu, Y. Ma, J. Mater. Sci. 54, 323 (2019)

    Article  Google Scholar 

  50. Z.H. Liang, J. Li, L.c. Gui, G.h. Peng, Z. Zhang, G.j. Jiang, Ceram. Int. 39, 3817 (2013)

    Article  Google Scholar 

  51. F. Yu, Y. Bai, P. Han, Q. Shi, S. Ni, J. Wu, J. Mater. Eng. Perform. 25, 5220 (2016)

    Article  Google Scholar 

  52. S. Chockalingam, D.A. Earl, V.R. Amarakoon, Int. J. Appl. Ceram. Technol. 6, 102 (2009)

    Article  Google Scholar 

  53. G.H. Peng, G.j. Jiang, W.l. Li, B.l. Zhang, L.d. Chen, J. Am. Ceram. Soc. 89, 3824 (2006)

    Article  Google Scholar 

  54. M.H. Bocanegra-Bernal, B. Matovic, Mater. Sci. Eng. A 527, 1314 (2010)

    Article  Google Scholar 

  55. H.H. Lu, J.L. Huang, Ceram. Int. 27, 621 (2001)

    Article  Google Scholar 

  56. G.H. Peng, X.G. Li, M. Liang, Z.H. Liang, Q. Liu, W.L. Li, Scr. Mater. 61, 347 (2009)

    Article  Google Scholar 

  57. P. Šajgalik, J. Dusza, M.J. Hoffmann, J. Am. Ceram. Soc. 78, 2619 (2010)

    Article  Google Scholar 

  58. R.M. German, P. Suri, S.J. Park, J. Mater. Sci. 44, 1 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Key R&D Program of China (Grant No. 2017YFB1103500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Zhao or Cao Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Zhao, Z. & Wang, C. Effect of powder characteristics on the thermal conductivity and mechanical properties of Si3N4 ceramics sintered by Spark plasma sintering. J Mater Sci: Mater Electron 30, 7590–7599 (2019). https://doi.org/10.1007/s10854-019-01074-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01074-w

Navigation