Skip to main content
Log in

Facile preparation and thermoelectric properties of PEDOT nanowires/Bi2Te3 nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Poly (3,4-ethylenedioxythiophene) nanowires (PEDOT NWs) with high electric conductivity were synthesized by a facile self-assembled micellar soft-template method. And then, Bi2Te3 powders and Bi2Te3 nanowires (Bi2Te3 NWs) were added as inorganic filler to form the PEDOT NWs/inorganic nanocomposite films by a simple and convenient vacuum filtration method. The thermoelectric (TE) properties of the flexible films were characterized. PEDOT NWs film exhibited the high σ value of 249.5 S cm−1 and does not require any treatment at room temperature. By incorporating both Bi2Te3 powders and Bi2Te3 NWs into these PEDOT NWs, the power factor of the polymer/inorganic composite materials is enhanced. The resulting PEDOT NWs/Bi2Te3 powders nanocomposite film exhibited a high power factor of 7.49 µW m−1 K−2 compared to that of 2.54 µW m−1 K−2 in PEDOT NWs. A maximum power factor of 9.06 µW m−1 K−2 is obtained from the PEDOT NWs/Bi2Te3 NWs composite film containing 10 wt% Bi2Te3 NWs at room temperature, which is about 3 of times that of the pure PEDOT NWs film. These composites provide a promising route to flexible and high-performance thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts et al., Nature 413, 597–602 (2001)

    Article  CAS  Google Scholar 

  2. L.E. Bell, Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  3. Z.Y. Lu, M. Layani, X.X. Zhao et al., Small 10, 3551–3554 (2014)

    Article  CAS  Google Scholar 

  4. G.J. Snyder, A.H. Snyder, Energy Environ. Sci. 10, 2280–2283 (2017)

    Article  Google Scholar 

  5. T.M. Tritt, M.A. Subramanian, MRS Bull. 31, 188–194 (2006)

    Article  Google Scholar 

  6. R.R. Yue, J.K. Xu. Synth. Met. 162, 912–917 (2012)

    Article  CAS  Google Scholar 

  7. F.J. Disalvo, Science 285, 703–706 (1999)

    Article  CAS  Google Scholar 

  8. O. Bubnova, X. Crispin, Energy Environ. Sci. 5, 9345–9362 (2012)

    Article  CAS  Google Scholar 

  9. K. Biswas, J.Q. He, I.D. Blum et al., Nature 489, 414–418 (2012)

    Article  CAS  Google Scholar 

  10. S.N. Guin, A. Chatterjee, D.S. Negi et al., Energy Environ. Sci. 6, 2603–2608 (2013)

    Article  CAS  Google Scholar 

  11. H.R. Yang, J.H. Bahk, T. Day et al., Nano Lett. 14, 5398–5404 (2014)

    Article  CAS  Google Scholar 

  12. R.A. Horne, J. Appl. Phys. 30, 393–397 (1959)

    Article  Google Scholar 

  13. J.S. Son, M.K. Choi, M.K. Han et al., Nano Lett. 12, 640–647 (2016)

    Article  Google Scholar 

  14. J.H. Yang, H.L. Yip, A.K.Y. Jen, Adv. Energy. Mater. 3, 549–565 (2013)

    Article  CAS  Google Scholar 

  15. M. DietrIch, J. Heinze, G. Heywang et al., J. Electroanal. Chem. 369, 87–92 (1994)

    Article  CAS  Google Scholar 

  16. H. Yamato, M. Ohwa, W. Wernet, J. Electroanal. Chem. 397, 163–170 (1995)

    Article  Google Scholar 

  17. B. Zhang, J. Sun, H.E. Katz et al., ACS Appl. Mater. Interfaces 2, 3170–3178 (2010)

    Article  CAS  Google Scholar 

  18. Y. Du, K.F. Cai, S. Chen et al., ACS Appl. Mater. Interfaces 6, 5735–5743 (2014)

    Article  CAS  Google Scholar 

  19. A.I. Boukai, Y. Bunimovich, J. Tahir-kheli et al., Nature 451, 168–171 (2008)

    Article  CAS  Google Scholar 

  20. J. Choi, J.Y. Lee, S.S. Lee et al., Adv. Energy. Mater. https://doi.org/10.1002/aenm.201502181 (2016)

    Article  Google Scholar 

  21. J.H. Xiong, L.Y. Wang, J.K. Xu et al., J. Mater. Sci. Mater. Electron. 27, 1769–1776 (2016)

    Article  CAS  Google Scholar 

  22. J. Kim, R. Patel, B.J. Jung et al., Macromol. Res. 26, 61–65 (2018)

    Article  CAS  Google Scholar 

  23. W. Lee, Y.H. Kang, J.Y. Lee et al., Rsc Adv. 6, 53339–53344 (2016)

    Article  CAS  Google Scholar 

  24. G.H. Kim, L. Shao, K. Zhang et al., Nat. Mater. 12, 719–723 (2013)

    Article  CAS  Google Scholar 

  25. N. Kim, S. Kee, S.H. Lee et al., Adv. Mater. 26, 2268–2272 (2014)

    Article  CAS  Google Scholar 

  26. N. Massonnet, A. Carella, A. de Geyer et al., Chem. Sci. 6, 412–417 (2015)

    Article  CAS  Google Scholar 

  27. J. Liu, X.J. Wang, D.Y. Li et al., Macromolecules 48, 585–591 (2015)

    Article  CAS  Google Scholar 

  28. H.J. Song, K.F. Cai, S.L. Shen, J. Nanopart. Res. 18, 386 (2016)

    Article  Google Scholar 

  29. A. Das, C.H. Lei, M. Elliott, et al, Org. Electron. 7, 181–187 (2006)

    Article  CAS  Google Scholar 

  30. N. Dubey, M. Leclerc, J Polym Sci. Part B 49, 467–475 (2015)

    Article  Google Scholar 

  31. G. Chen, A. Shakouri, J Heat Trans-T Asme. 124, 242–252 (2002)

    Article  CAS  Google Scholar 

  32. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus et al., Energy Environ. Sci. 5, 5147–5162 (2012)

    Article  Google Scholar 

  33. M.S. Dresselhaus, G. Chen, M.Y. Tang et al., Adv. Mater. 19, 1043–1053 (2007)

    Article  CAS  Google Scholar 

  34. G.Q. Zhang, B. Kirk, L.A. Jauregui et al., Nano Lett. 12, 56–60 (2012)

    Article  Google Scholar 

  35. M. He, J. Ge, Z.Q. Lin et al., Energy Environ. Sci. 5, 8351–8358 (2012)

    Article  CAS  Google Scholar 

  36. J.W. Choi, M.G. Han, S.Y. Kim et al., Synth. Met. 141, 293–299 (2004)

    Article  CAS  Google Scholar 

  37. T.Y. Kim, C.M. Park, J.E. Kim et al., Synth. Met. 149, 169–174 (2005)

    Article  CAS  Google Scholar 

  38. C.C. Dun, C.A. Hewitt, H.H. Huang et al., Phys. Chem. Chem. Phys. 17, 8591–8595 (2015)

    Article  CAS  Google Scholar 

  39. H.J. Song, C.C. Liu, H.F. Zhu et al., J. Electron. Mater. 42, 1268–1274 (2013)

    Article  CAS  Google Scholar 

  40. Q. Zhang, Y.M. Sun, F. Jiao et al., Synth. Met. 162, 788–793 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Hui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, ZH., Liu, HH., Wang, N. et al. Facile preparation and thermoelectric properties of PEDOT nanowires/Bi2Te3 nanocomposites. J Mater Sci: Mater Electron 29, 17367–17373 (2018). https://doi.org/10.1007/s10854-018-9834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9834-1

Navigation