Skip to main content
Log in

Low-temperature sintered SnO2 electron transport layer for efficient planar perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead amine halide perovskite solar cells (PSCs) have become dominant photovoltaic research topic in this decade. Electron transport layer (ETL) play a crucial role on PSCs. Here, we use tin tetrachloride as Sn source to synthesize SnO2 nanocrystals in a simple hydrothermal method. The as-synthesized SnO2 is spin-coated on FTO substrate, and then sintered under low temperature to form the ETL of planar PSCs. The concentration of SnO2 spin-coating solution and sintering temperature have great influence on the ETL quality and charge transportation in PSCs. Through optimized treatment (0.15 M SnO2, 120 °C sintering), the high quality SnO2 ETL with a uniform coverage, appropriate thickness, less charge recombination and low resistance can be obtained. Based on the ETL, a planar PSC with FAxMA1−xPbI3 achieves a high power conversion efficiency (PCE) of 19.34%. In addition, the planar PSCs based on SnO2 exhibit a stable PCE output and slight hysteresis. These researches provide a low-cost, easy strategy to fabricate tin oxide, and present potential to replace traditional titanium oxide (TiO2) in PSCs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Snaith, J. Phys. Chem. Lett. 4, 3623–3630 (2013)

    Article  Google Scholar 

  2. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542–546 (2014)

    Article  Google Scholar 

  3. M. Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith, Science 338, 643–647 (2012)

    Article  Google Scholar 

  4. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Chem. Soc. Rev. 46, 5975–6023 (2017)

    Article  Google Scholar 

  5. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  6. W. Yang, B. Park, E. Jung, N. Jeon, Y. Kim, D. Lee, S. Shin, J. Seo, E. Kim, J. Noh, Science 356, 1376–1379 (2017)

    Article  Google Scholar 

  7. K. Bush, A. Palmstrom, Z. Yu, M. Boccard, R. Cheacharoen, J. Mailoa, D. Mcmeekin, R. Hoye, C. Bailie, T. Leijtens, Nat. Energy 2, 17009 (2017)

    Article  Google Scholar 

  8. J. Correabaena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. Jacobsson, M. Calvo, A. Abate, Adv. Mater. 28, 5031–5037 (2016)

    Article  Google Scholar 

  9. M. Green, T. Bein, Nat. Mater. 14, 559 (2015)

    Article  Google Scholar 

  10. N. Park, M. Gratzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 1, 16152 (2016)

    Article  Google Scholar 

  11. R. Service, Science 344, 458 (2013)

    Article  Google Scholar 

  12. L. Yanqi, A. Sigalit, S. Michael, M. Ernesto, L. Barry, E. Lioz, Adv. Funct. Mater. 28, 1706995 (2018)

    Article  Google Scholar 

  13. H. Lu, Y. Ma, B. Gu, W. Tian, L. Li, J. Mater. Chem. A 3, 16445–16452 (2015)

    Article  Google Scholar 

  14. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 137, 6730–6733 (2015)

    Article  Google Scholar 

  15. L. Gouda, R. Gottesman, A. Ginsburg, D. Keller, E. Haltzi, J. Hu, S. Tirosh, A. Anderson, A. Zaban, P. Boix, J. Phys. Chem. Lett. 6, 4640–4645 (2015)

    Article  Google Scholar 

  16. B. Roose, J. Baena, K. Godel, M. Graetzel, A. Hagfeldt, U. Steiner, A. Abate, Nano Energy 30, 517 (2016)

    Article  Google Scholar 

  17. P. Tiwana, P. Docampo, M. Johnston, H. Snaith, L. Herz, ACS Nano 5, 5158–5166 (2011)

    Article  Google Scholar 

  18. M. Noh, M. Soh, C. Teh, E. Lim, C. Yap, M. Ibrahim, N. Ludin, M. Teridi, Sol. Energy 158, 474–482 (2017)

    Article  Google Scholar 

  19. P. Zhou, J. Wu, Y. Tu, M. Zhen, J. Huo, Y. Wei, Z. Lan, Sol. Energy 137, 579–584 (2016)

    Article  Google Scholar 

  20. J. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. Jacobsson, A. Kandada, S. Zakeeruddin, Energy Environ. Sci. 8, 2928–2934 (2015)

    Article  Google Scholar 

  21. L. Huang, X. Sun, C. Li, J. Xu, R. Xu, Y. Du, J. Ni, H. Cai, J. Li, Z. Hu, J. Zhang, ACS Appl. Mater. Interfaces 9, 21909 (2017)

    Article  Google Scholar 

  22. X. Jun, O. Yuji, I. Satoshi, M. Hiroaki, K. Ken, Y. Shinsuke, J. Appl. Phys. 123, 115114 (2018)

    Article  Google Scholar 

  23. P. Joshi, L. Zhang, I. Hossain, H. Abbas, R. Kottokkaran, S. Nehra, M. Dhaka, M. Noack, V. Dalal, AIP Adv. 6, 115114 (2016)

    Article  Google Scholar 

  24. G. Xing, N. Mathews, S. Sun, S. Lim, Y. Lam, M. Gratzel, S. Mhaisalkar, T. Sum, Science 342, 344–347 (2013)

    Article  Google Scholar 

  25. T. Wu, J. Wu, Y. Tu, X. He, Z. Lan, M. Huang, J. Lin, J. Power Sources 365, 1–6 (2017)

    Article  Google Scholar 

  26. S. Li, Y. Zhao, X. Gu, Y. Qiang, N. Tan, J. Mater. Sci. Mater. Electron. 28, 13626–13632 (2018)

    Article  Google Scholar 

  27. M. Zhu, W. Liu, W. Ke, S. Clark, E. Secor, T. Song, M. Kanatzidis, X. Li, M. Hersam, J. Mater. Chem. A 5, 1–6 (2017)

    Article  Google Scholar 

  28. Z. Zhu, Y. Bai, X. Liu, C. Chu, S. Yang, A. Jen, Adv. Mater. 28, 6478–6484 (2016)

    Article  Google Scholar 

  29. C. Fei, L. Guo, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, Nano Energy 27, 17–26 (2016)

    Article  Google Scholar 

  30. S. Senthilarasu, T. Peiris, J. Garciacanadas, K. Wijayantha, J. Phys. Chem. C 116, 19053–19061 (2012)

    Article  Google Scholar 

  31. D. Liu, J. Yang, T. Kelly, J. Am. Chem. Soc. 136, 17116–17122 (2014)

    Article  Google Scholar 

  32. C. Wu, C. Chiang, Z. Tseng, M. Nazeeruddin, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 8, 2725–2733 (2015)

    Article  Google Scholar 

  33. X. Zhang, T. Wu, X. Xu, L. Zhang, J. Tang, X. He, J. Wu, Z. Lan, Sol. Energy Mater. Sol. Cells 178, 65–73 (2018)

    Article  Google Scholar 

  34. J. Luo, Y. Wang, Q. Zhang, Sol. Energy 163, 289–306 (2018)

    Article  Google Scholar 

  35. Z. Guo, L. Gao, C. Zhang, Z. Xu, T. Ma, J. Mater. Chem. A 6, 4572–4589 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial joint support by the National Natural Science Foundation of China (Nos. U1705256, 91422301, 51472094, 61474047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihuai Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wu, J., Guo, P. et al. Low-temperature sintered SnO2 electron transport layer for efficient planar perovskite solar cells. J Mater Sci: Mater Electron 29, 13138–13147 (2018). https://doi.org/10.1007/s10854-018-9437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9437-x

Navigation