Skip to main content
Log in

Low-temperature-deposited SnO2 films for efficient planar CH3NH3PbI3 photovoltaics

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-temperature-synthesized electron transport layers (ETLs) are in demand for the industrialization and flexibility of perovskite solar cells (PeSCs). SnO2 ETLs are prepared via chemical bath deposition at low temperature. Uniform SnO2 ETLs with high crystallinity and transmittance are obtained from a 0.3 M SnCl4 solution through a 100 °C heat treatment. They effectively transport electrons and weaken recombination loss in SnO2-based photovoltaics. SnO2-based PeSCs exhibit a power conversion efficiency (PCE) of 16.92% with a short-circuit current density (JSC) of 21.48 mA cm−2 and a fill factor (FF) of 73.62%. Secondary bath modification is proposed to mend the surface pinholes of SnO2 ETLs and boost the photoelectric properties of SnO2-based devices. The photovoltaic performance of the devices based on modified SnO2 (2-SnO2) films exhibits an impressive increase compared with unembellished ones due to less pinholes and suppressed surface defects. The open circuit voltage (VOC) and FF of 2-SnO2-based photovoltaics are enhanced to 1.10 V and 76.71%, respectively, resulting in PCE to 18.04%. Simultaneously, the dark current and hysteresis of 2-SnO2-based PeSCs are reduced because the secondary bath refines the surface nanoparticles of ETLs, passivates defects and reduces charge recombination at ETL/perovskite interfaces. Accordingly, 2-SnO2-based photovoltaics with a large area (~ 1 cm2) achieves 12.91% efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    CAS  Google Scholar 

  2. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    CAS  Google Scholar 

  3. Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Decoppet JD (2016) Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci Adv 2:e1501170–e1501170

    Google Scholar 

  4. Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Seo J (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3:682–689

    CAS  Google Scholar 

  5. Kim M, Kim GH, Lee TK, Choi IW, Choi HW, Jo Y, Lee H (2019) Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3:2179–2192

    CAS  Google Scholar 

  6. Zheng D, Peng R, Wang G, Logsdon JL, Wang B, Hu X, Huang W (2019) Simultaneous bottom-up interfacial and bulk defect passivation in highly efficient planar perovskite solar cells using nonconjugated small-molecule electrolytes. Adv Mater 31:1903239

    CAS  Google Scholar 

  7. Ueoka N, Oku T, Suzuki A, Sakamoto H, Yamada M, Minami S, Okita M (2019) Effects of TiO2 nanoparticles with different sizes on the performance of CH3NH3PbI3-xClx solar cells. AIP Publishing LLC AIP Conf Proc 2067:020001

    Google Scholar 

  8. Duan J, Zhao Y, Wang Y, Yang X, Tang Q (2019) Hole-boosted Cu(Cr, M)O2 nanocrystals for all-inorganic CsPbBr3 Perovskite solar cells. Angew Chem 131:16293–16297

    Google Scholar 

  9. Lee SW, Bae S, Cho K, Kim S, Hwang JK, Lee W, Chun H (2019) Sputtering of TiO2 for high-efficiency Perovskite and 23.1% Perovskite/silicon 4-terminal tandem solar cells. ACS Appl Energy Mater 2:6263–6268

    CAS  Google Scholar 

  10. Duan J, Wu J, Zhang J, Xu Y, Wang H, Gao D, Lund PD (2016) TiO2/ZnO/TiO2 sandwich multi-layer films as a hole-blocking layer for efficient perovskite solar cells. Int J Energy Res 40:806–813

    CAS  Google Scholar 

  11. Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Grätzel M (2014) Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett 14:2591–2596

    CAS  Google Scholar 

  12. Wang Y, Wan J, Ding J, Hu JS, Wang D (2019) A rutile TiO2 electron transport layer for the enhancement of charge collection for efficient perovskite solar cells. Angew Chem Int Ed 58:9414–9418

    CAS  Google Scholar 

  13. Hu W, Zhou W, Lei X, Zhou P, Zhang M, Chen T, Yang S (2019) Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar Perovskite solar cells. Adv Mater 31:1806095

    Google Scholar 

  14. Kuang Y, Zardetto V, van Gils R, Karwal S, Koushik D, Verheijen MA, Kessels WM (2018) Low-temperature plasma-assisted atomic-layer-deposited SnO2 as an electron transport layer in planar perovskite solar cells. ACS Appl Mater Interfaces 10:30367–30378

    CAS  Google Scholar 

  15. Song J, Zhang W, Wang D, Deng K, Wu J, Lan Z (2019) Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis planar perovskite solar cells. Sol Energy 185:508–515

    CAS  Google Scholar 

  16. Liu C, Zhang L, Zhou X, Gao J, Chen W, Wang X, Xu B (2019) Hydrothermally treated SnO2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 173%. Adv Funct Mater 29:180760

    Google Scholar 

  17. Abulikemu M, Neophytou M, Barbé JM, Tietze ML, El Labban A, Anjum DH, Del Gobbo S (2017) Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. J Mater Chem A 5:7759–7763

    CAS  Google Scholar 

  18. Dong Q, Li J, Shi Y, Chen M, Ono LK, Zhou K, Wang L (2019) Improved SnO2 electron transport layers solution-deposited at near room temperature for rigid or flexible perovskite solar cells with high efficiencies. Adv Energy Mater 9:1900834

    Google Scholar 

  19. Barbé J, Tietze ML, Neophytou M, Murali B, Alarousu E, Labban AE, Amassian A (2017) Amorphous tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells. ACS Appl Mater Interfaces 9:11828–11836

    Google Scholar 

  20. Ke W, Zhao D, Cimaroli AJ, Grice CR, Qin P, Liu Q, Fang G (2015) Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. J Mater Chem A 3:24163–24168

    CAS  Google Scholar 

  21. Huang X, Hu Z, Xu J, Wang P, Wang L, Zhang J, Zhu Y (2017) Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol Energ Mat Sol C 164:87–92

    CAS  Google Scholar 

  22. O'Regan BC, Durrant JR, Sommeling PM, Bakker NJ (2007) Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J Phys Chem C 111:14001–14010

    CAS  Google Scholar 

  23. Li Y, Ding B, Chu QQ, Yang GJ, Wang M, Li CX, Li CJ (2017) Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Sci Rep 7:46141

    CAS  Google Scholar 

  24. Snaith HJ, Ducati C (2010) SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett 10:1259–1265

    CAS  Google Scholar 

  25. Duan J, Yue Q, Xiong Q, Wang L, Zhu L, Zhang K, Wang H (2019) Surface modification of SnO2 blocking layers for hysteresis elimination of MAPbI3 photovoltaics. Appl Surf Sci 470:613–621

    CAS  Google Scholar 

  26. Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Ma T (2015) Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C119:10212–10217

    Google Scholar 

  27. Wang C, Zhao D, Grice CR, Liao W, Yu Y, Cimaroli A, Liu P (2016) Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J Mater Chem A 4:12080–12087

    CAS  Google Scholar 

  28. Xu Y, Wang Y, Yu J, Feng B, Zhou H, Zhang J, Wang H (2016) Performance improvement of perovskite solar cells based on pcbm-modified ZnO-nanorod arrays. IEEE J Photovolt 6:1530–1536

    Google Scholar 

  29. Yue Q, Duan J, Zhu L, Zhang K, Zhang J, Wang H (2018) Effect of HCl etching on TiO2 nanorod-based perovskite solar cells. J Mater Sci 53:15257–15270. https://doi.org/10.1007/s10853-018-2685-6

    Article  CAS  Google Scholar 

  30. Huang L, Sun X, Li C, Xu J, Xu R, Du Y, Zhang J (2017) UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells. ACS Appl Mater Interfaces 9:21909–21920

    CAS  Google Scholar 

  31. Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Yang G (2015) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137:6730–6733

    CAS  Google Scholar 

  32. Yang H, Wu Y, Zou Y, Dong Y, Yuan J, Cui C, Li Y (2018) A new polymer donor for efficient polymer solar cells: simultaneously realizing high short-circuit current density and transparency. J Mater Chem A 6:14700–14708

    CAS  Google Scholar 

  33. Köster U, Tu KN, Ho PS (1977) Effect of substrate temperature on the microstructure of thin-film silicide. Appl Phys Lett 31:634–636

    Google Scholar 

  34. Holzwarth U, Gibson N (2011) The Scherrer equation versus the 'Debye-Scherrer equation'. Nat Nanotechnol 6:534–534

    CAS  Google Scholar 

  35. Ding B, Huang SY, Chu QQ, Li Y, Li CX, Li CJ, Yang GJ (2018) Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J Mater Chem A 6:10233–10242

    CAS  Google Scholar 

  36. Duan J, Xiong Q, Feng B, Xu Y, Zhang J, Wang H (2017) Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells. Appl Surf Sci 391:677–683

    CAS  Google Scholar 

  37. Kameya Y, Hanamura K (2011) Enhancement of solar radiation absorption using nanoparticle suspension. Sol Energy 85:299–307

    CAS  Google Scholar 

  38. Ren X, Yang D, Yang Z, Feng J, Zhu X, Niu J, Liu SF (2017) Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces 9:2421–2429

    CAS  Google Scholar 

  39. Yang G, Qin P, Fang G, Li G (2018) A Lewis base-assisted passivation strategy towards highly efficient and stable perovskite solar cells. Sol RRL 2:1800055

    Google Scholar 

  40. Xu Y, Feng B, Xue M, Li Z, Xiong Q, Zhang J, Wang H (2017) Performance improvement of dual processed perovskite solar cell-acid-modified ZnO nanorods with Cl-doped light harvesting layer. Int J Energy Res 41:1847–1854

    CAS  Google Scholar 

  41. Yang D, Yang R, Ren X, Zhu X, Yang Z, Li C, Liu S (2016) Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv Mater 28:5206–5213

    CAS  Google Scholar 

  42. Tao L, Wang Z, Duan K, Yang J, Zhang B, Ma G, Dai S (2019) Liquid crystal molecule as “binding agent” enables superior stable perovskite solar cells with high fill factor. Solar RRL 3:1900125

    Google Scholar 

  43. Ding M, Sun L, Chen X, Luo T, Ye T, Zhao C, Chang H (2019) Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability. J Mater Sci 54:12000–12011

    CAS  Google Scholar 

  44. Calado P, Telford AM, Bryant D, Li X, Nelson J, O’Regan BC, Barnes PR (2016) Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat Commun 7:13831

    CAS  Google Scholar 

  45. Wu Y, Shen H, Walter D, Jacobs D, Duong T, Peng J, Weber K (2016) On the origin of hysteresis in perovskite solar cells. Adv Funct Mater 26:6807–6813

    CAS  Google Scholar 

  46. Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Meng Q (2014) Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl Phys Lett 104:063901

    Google Scholar 

  47. Wang C, Liu P, Ju H, Yuan Q, Han D, Wang Y, Feng L (2018) A simple perylene derivative as a solution-processable cathode interlayer for perovskite solar cells with enhanced efficiency and stability. ACS Appl Mater Interfaces 10:15933–15942

    CAS  Google Scholar 

  48. Zhu Z, Bai Y, Liu X, Chueh CC, Yang S, Jen AKY (2016) Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater 28:6478–6484

    CAS  Google Scholar 

Download references

Acknowledgements

This work is aided financially by the National Natural Science Foundation of China (Nos. 11874143 and 11204070), Educational Commission of Hubei Province of China (No. D20191005) and Application Fundamental Research Project of Wuhan Science and Technology Bureau (No. 2019010701011396).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxia Duan or Hao Wang.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

a Optical transmission of the SnO2 films. b I-V linear sweeping curves of the FTO/SnO2/Au device. (TIF 761 kb)

Figure S2

a Top-view FIB image of MAPbI3 film. b and c Cross-sectional view FIB images of MAPbI3 film deposited on SnO2/FTO substrate. H1, H2 and H3 are the thickness of MAPbI3, SnO2, and FTO, respectively. EDS mapping of: d Sn, e I, and f Pb. (TIF 7558 kb)

Figure S3

Typical SEM images of SnO2 films: a 70 oC, b 100 °C, c 150 °C, and d 200 °C. (TIF 4697 kb)

Figure S4

a XRD of SnO2 films on silicon substrate. b XRD of perovskite film on SnO2 film. (TIF 773 kb)

Figure S5

Schematic diagram of modifying SnO2 thin film with small concentration of SnCl4. (TIF 1613 kb)

Figure S6

Typical J-V curves of PeSCs with large area (~1 cm2). (TIF 176 kb)

Supplementary file7 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Duan, J., Liu, F. et al. Low-temperature-deposited SnO2 films for efficient planar CH3NH3PbI3 photovoltaics. J Mater Sci 56, 677–690 (2021). https://doi.org/10.1007/s10853-020-05216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05216-y

Navigation