Skip to main content
Log in

Room-temperature sputtered-SnO2 modified anode toward efficient TiO2-based planar perovskite solar cells

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

It is of the utmost importance to promote the charge transport and retard the heterojunction barrier in the functional layers and at their adjacent interfaces to pursuit excellent photovoltaic characteristics of the perovskite solar cells (PSCs). Here, room-temperature sputtered-SnO2 films are introduced to modify FTO anode for improving carrier extraction and aligning energy band in the TiO2-based planar PSCs. For the SnO2-modified substrate with suitable sputtering duration, the following TiO2 film exhibits smoother surface roughness, less surface defects, and lower the trap-assisted interfacial recombination than that directly on the FTO, further facilitating the growth of perovskite grain size and promoting the extraction efficiency of charge carriers. On the basis of the optimized SnO2(6 nm)/TiO2 stack layer as electron transport layer (ETL), the PSC exhibits an outstanding power conversion efficiency of 21.45%, which is much better than that of the single TiO2-based device (19.68%). More importantly, the cell with the bilayer ETL shows a long-term stability against air, maintaining over 76% of its initial efficiency after 40 d. These achievements suggest that this study provides a feasible path to design energy level alignment and low temperature ETL for highly efficient and stable PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang D, Yang R, Wang K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun, 2018, 9: 3239

    Article  Google Scholar 

  2. Chen Y, Tan S, Li N, et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule, 2020, 4: 1961–1976

    Article  Google Scholar 

  3. Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photon, 2014, 8: 506–514

    Article  Google Scholar 

  4. Yang G, Chen C, Yao F, et al. Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells. Adv Mater, 2018, 30: 1706023

    Article  Google Scholar 

  5. Jia P, Bi W, Huang X, et al. Discrete SnO2 Nanoparticl-Modified Poly (3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) for efficient perovskite solar cells. Sol RRL, 2019, 3: 1900162

    Article  Google Scholar 

  6. Yang D, Zhou X, Yang R, et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci, 2016, 9: 3071–3078

    Article  Google Scholar 

  7. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051

    Article  Google Scholar 

  8. NREL. Best Research Cell Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf

  9. Hui W, Yang Y, Xu Q, et al. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv Mater, 2020, 32: 1906374

    Article  Google Scholar 

  10. Liu C, Zhang L, Zhou X, et al. Hydrothermally treated SnO2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%. Adv Funct Mater, 2019, 29: 1807604

    Article  Google Scholar 

  11. Yi H, Wang D, Mahmud M A, et al. Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl Energy Mater, 2018, 1: 6027–6039

    Article  Google Scholar 

  12. Qiu L, Liu Z, Ono L K, et al. Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv Funct Mater, 2018, 29: 1806779

    Article  Google Scholar 

  13. Lu H, Tian W, Gu B, et al. TiO2 electron transport bilayer for highly efficient planar perovskite solar cell. Small, 2017, 13: 1701535

    Article  Google Scholar 

  14. Seyed-Talebi S M, Kazeminezhad I, Shahbazi S, et al. Efficiency and stability enhancement of fully ambient air processed perovskite solar cells using TiO2 paste with tunable pore structure. Adv Mater Interfaces, 2020, 7: 1900939

    Article  Google Scholar 

  15. Zhang Y, Liu X, Li P, et al. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy, 2019, 56: 733–740

    Article  Google Scholar 

  16. Gu H, Zhao C, Zhang Y, et al. Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers. Nanotechnology, 2018, 29: 385401

    Article  Google Scholar 

  17. Liu K, Chen S, Wu J, et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ Sci, 2018, 11: 3463–3471

    Article  Google Scholar 

  18. Jiang Q, Zhang L, Wang H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2016, 2: 16177

    Article  Google Scholar 

  19. You Y, Tian W, Min L, et al. TiO2/WO3 bilayer as electron transport layer for efficient planar perovskite solar cell with efficiency exceeding 20%. Adv Mater Interfaces, 2019, 7: 1901406

    Article  Google Scholar 

  20. Lin L, Yang Z, Jiang E, et al. ZnO-modified anode for high-performance SnO2-based planar perovskite solar cells. ACS Appl Energy Mater, 2019, 2: 7062–7069

    Article  Google Scholar 

  21. Ma J, Yang G, Qin M, et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells. Adv Sci, 2017, 4: 1700031

    Article  Google Scholar 

  22. Liu Z, Sun B, Liu X, et al. 15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO2/SnO2 bilayer as the electron transport layer. J Mater Chem A, 2018, 6: 7409–7419

    Article  Google Scholar 

  23. Zhao H, Han Y, Xu Z, et al. A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv Energy Mater, 2019, 9: 1902279

    Article  Google Scholar 

  24. Bube R H. Trap density determination by space-charge-limited currents. J Appl Phys, 1962, 33: 1733–1737

    Article  Google Scholar 

  25. Obrzut J, Page K A. Electrical conductivity and relaxation in poly(3-hexylthiophene). Phys Rev B, 2009, 80: 195211

    Article  Google Scholar 

  26. Wang D, Jiang J, Furuta M. Investigation of carrier generation mechanism in fluorine-doped n+-In-Ga-Zn-O for self-aligned thin-film transistors. J Display Technol, 2016, 12: 258–262

    Article  Google Scholar 

  27. Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater, 2020, 30: 1909972

    Article  Google Scholar 

  28. Sun M, Zhang H, Liang C, et al. Exploring electron transporting layer in combination with a polyelectrolyte for n-i-p perovskite solar cells. Adv Mater Interfaces, 2020, 7: 2000412

    Article  Google Scholar 

  29. Li Z, Wang R, Xue J, et al. Core-Shell ZnO@SnO2 nanoparticles for efficient inorganic perovskite solar cells. J Am Chem Soc, 2019, 141: 17610–17616

    Article  Google Scholar 

  30. Liu C, Cai M, Yang Y, et al. A C60/TiOx bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. J Mater Chem A, 2019, 7: 11086–11094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DaPeng Wang or ShengZhong Frank Liu.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0202403), the National Natural Science Foundation of China (Grant No. 91733301), the Natural Science Foundation of Shaanxi Provincial Department of Education (Grant Nos. 2020NY-159 and 2020JM-297), the Fundamental Research Funds for the Central Universities (Grant No. GK202103052), the Changjiang Scholar and the Innovative Research Team (Grant No. IRT_14R33), the 111 Project (Grant No. B21005), and the Chinese National 1000-talent-plan program (Grant No. 111001034).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, Y., Liu, Z. et al. Room-temperature sputtered-SnO2 modified anode toward efficient TiO2-based planar perovskite solar cells. Sci. China Technol. Sci. 64, 1995–2002 (2021). https://doi.org/10.1007/s11431-021-1861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1861-y

Keywords

Navigation