Skip to main content
Log in

Investigations of high-temperature tensile properties of Zn–25Sn–x(0.1–0.2)Cu–y(0.01–0.02)Ti high-temperature Pb-free solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The use of Pb-containing solders in electronic products has been restricted due to their harm to both human health and the environment. Although the Sn–37Pb solder has been well replaced by Sn–3.0Ag–0.5Cu or other Pb-free solders, there is no drop in replacement for high-temperature Pb-free solders. In this study, the microstructure and high-temperature tensile properties of the Zn–25Sn–x(0.1–0.2)Cu–y(0.01–0.02)Ti high-temperature Pb-free solders were investigated. The design of the moderate alloy composition prevented undesirable Cu- and Ti-containing intermetallic compound formation that may cause alloy embrittlement. The solders exhibit superior tensile strength and competitive elongation compared with the conventional high-Pb solders and the other potential candidates. The Zn–25Sn–xCu–yTi solders can be strengthened in terms of the tensile strength enhancement without a loss of ductility under both room-temperature and high-temperature testing conditions. The minor Cu and Ti elements served as heterogeneous nucleation sites for inducing the microstructure refinement of the primary (Zn) phase. The Cu-in-Zn solid solution phenomenon as well as the formation of deformation twins during the high-temperature tensile test also contributed to the superior tensile properties of the designed alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Rettenmayr, P. Lambracht, B. Kempf, M. Graff, Adv. Eng. Mater. 7, 965 (2005)

    CAS  Google Scholar 

  2. H. Zhang, J. Minter, N.C. Lee, J. Electron. Mater. 48, 201 (2019)

    CAS  Google Scholar 

  3. F. Lang, H. Yamaguchi, H. Ohashi, H. Sato, J. Electron. Mater. 40, 1563 (2011)

    CAS  Google Scholar 

  4. K. Suganuma, S.J. Kim, K.S. Kim, J. Min, JOM 61, 64 (2009)

    CAS  Google Scholar 

  5. G. Zeng, S. McDonald, K. Nogita, Microelectron. Reliab. 52, 1306 (2012)

    CAS  Google Scholar 

  6. V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981 (2011)

    CAS  Google Scholar 

  7. F.W. Gayle, G. Becka, A. Syed, J. Badgett, G. Whitten, T.Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, JOM 53, 17 (2001)

    CAS  Google Scholar 

  8. H. Schoeller, S. Bansal, A. Knobloch, D. Shaddock, J. Cho, Mater. Sci. Eng. A 528, 1063 (2011)

    Google Scholar 

  9. S. Menon, E. George, M. Osterman, M. Pecht, J. Mater. Sci. Mater. Electron. 26, 4021 (2015)

    CAS  Google Scholar 

  10. E. Wood, K. Nimmo, J. Electron. Mater. 23, 709 (1994)

    CAS  Google Scholar 

  11. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R Rep. 27, 95 (2000)

    Google Scholar 

  12. J. Glazer, J. Electron. Mater. 23, 693 (1994)

    CAS  Google Scholar 

  13. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    CAS  Google Scholar 

  14. H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141 (2009)

    CAS  Google Scholar 

  15. A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale, S. Mucklejohn, J. Mater. Eng. Perform. 21, 629 (2012)

    CAS  Google Scholar 

  16. J.W. Elmer, R.P. Mulay, Scr. Mater. 120, 14 (2016)

    CAS  Google Scholar 

  17. W. Liu, Y. Wang, Y. Ma, Q. Yu, Y. Huang, Mater. Sci. Eng. A 651, 626 (2016)

    CAS  Google Scholar 

  18. J.W. Yoon, H.S. Chun, S.B. Jung, J. Alloys Compd. 469, 108 (2009)

    CAS  Google Scholar 

  19. J.M. Song, C.H. Tsai, Y.P. Fu, Corros. Sci. 52, 2519 (2010)

    CAS  Google Scholar 

  20. J.N. Lalena, N.F. Dean, M.W. Weiser, J. Electron. Mater. 31, 1244 (2002)

    CAS  Google Scholar 

  21. M. Yu, Z. Xu, Y.B. Choi, T. Konishi, K. Matsugi, J. Yu, S. Motozuka, K.I. Suetsugu, Mater. Trans. 58, 140 (2017)

    CAS  Google Scholar 

  22. S.J. Kim, K.S. Kim, S.S. Kim, C.Y. Kang, K. Suganuma, Mater. Trans. 49, 1531 (2008)

    CAS  Google Scholar 

  23. N. Kang, H.S. Na, S.J. Kim, C.Y. Kang, J. Alloy. Compd. 467, 246 (2009)

    CAS  Google Scholar 

  24. S.A. Musa, M.A.A.M. Salleh, N. Saud, Adv. Mater. Res. 795, 518 (2013)

    Google Scholar 

  25. R. Mahmudi, M. Eslami, J. Electron. Mater. 29, 2495 (2010)

    Google Scholar 

  26. R. Mahmudi, M. Eslami, J. Mater. Sci. Mater. Electron. 22, 1168 (2011)

    CAS  Google Scholar 

  27. X. Niu, K.L. Lin, Mater. Sci. Eng. A 677, 384 (2016)

    CAS  Google Scholar 

  28. C.W. Liu, K.L. Lin, J. Electron. Mater. 43, 4502 (2014)

    CAS  Google Scholar 

  29. X. Niu, K.L. Lin, J. Alloys Compd. 646, 852 (2015)

    CAS  Google Scholar 

  30. X. Niu, K.L. Lin, J. Mater. Sci. Mater. Electron. 28, 105 (2017)

    Google Scholar 

  31. J.E. Lee, K.S. Kim, K. Suganuma, M. Inoue, G. Izuta, Mater. Trans. 48, 584 (2007)

    CAS  Google Scholar 

  32. W.L.R. Santos, C. Brito, F. Bertelli, J.E. Spinelli, A. Garcia, J. Alloys Compd. 647, 989 (2015)

    CAS  Google Scholar 

  33. W.C. Huang, K.L. Lin, J. Electron. Mater. 45, 6137 (2016)

    CAS  Google Scholar 

  34. C.W. Chang, K.L. Lin, J. Mater. Sci. Mater. Electron. 29, 10962 (2018)

    CAS  Google Scholar 

  35. C.W. Chang, K.L. Lin, J. Electron. Mater. 48, 135 (2019)

    CAS  Google Scholar 

  36. W.T. Guo, C.L. Liang, K.L. Lin, Mater. Sci. Eng. A 750, 117 (2019)

    CAS  Google Scholar 

  37. D. Sarwono, K.L. Lin, J. Electron. Mater. 48, 99 (2019)

    CAS  Google Scholar 

  38. J.C. Lin, C.L. Liang, K.L. Lin, Mater. Sci. Eng. A 765, 138323 (2019)

    CAS  Google Scholar 

  39. W.M. Chen, S.K. Kang, C.R. Kao, J. Alloys Compd. 520, 244 (2012)

    CAS  Google Scholar 

  40. H. Shang, Z.L. Ma, S.A. Belyakov, C.M. Gourlay, J. Alloys Compd. 715, 471 (2017)

    CAS  Google Scholar 

  41. Z.L. Ma, H. Shang, A.A. Daszki, S.A. Belyakov, C.M. Gourlay, J. Alloys Compd. 777, 1357 (2019)

    CAS  Google Scholar 

  42. H.Y. Lu, H. Balkan, K. Simon, JOM 57, 30 (2005)

    CAS  Google Scholar 

  43. A.A. El-Daly, W.M. Desoky, A.F. Saad, N.A. Mansor, E.H. Lotfy, H.M. Abd-Elmoniem, H. Hashem, Mater. Des. 80, 152 (2015)

    CAS  Google Scholar 

  44. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, Binary Alloy Phase Diagrams, vol. 2 (ASM International, Materials Park, Ohio, 1986), p. 2086

    Google Scholar 

  45. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, Binary Alloy Phase Diagrams (ASM International, Materials Park, Ohio, 1986), p. 9811

    Google Scholar 

  46. B. Gurrutxaga-Lerma, Int. J. Solids Struct. 108, 263 (2017)

    Google Scholar 

  47. Z. Haidong, I. Shohji, M. Shimoda, H. Watanabe, Mater. Trans. 57, 873 (2016)

    CAS  Google Scholar 

  48. X. Chen, J. Zhou, F. Xue, Y. Yao, Mater. Sci. Eng. A 662, 251 (2016)

    CAS  Google Scholar 

  49. F. Lang, H. Tanaka, O. Munegata, T. Taguchi, T. Narita, Mater. Charact. 54, 223 (2005)

    CAS  Google Scholar 

  50. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Nature 451, 1085 (2008)

    CAS  Google Scholar 

  51. K. Ito, M. Kumagai, T. Hayashi, M. Yamaguchi, Scr. Mater. 49, 285 (2003)

    CAS  Google Scholar 

  52. W.D.Callister Jr., Materials Science and Engineering - An Introduction, 7th edn(Wiley, New York, USA, 2006), pp. 143, 147, 188

  53. D.R. Askeland, P.P. Fulay, W.J. Wright, The Science and Engineering of Materials, 6th edn. (Cengage Learning, Stamford, Connecticut, USA, 2010), pp. 206, 458

  54. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997)

    Google Scholar 

  55. S. Sun, Y. Ren, L. Wang, B. Yang, H. Li, G. Qin, Mater. Sci. Eng. A 701, 129 (2017)

    CAS  Google Scholar 

  56. A.U. Tuflin, V.G. Sursaeva, U. Czubayko, Defect. Diffus. Forum 194–199, 1253 (2001)

    Google Scholar 

  57. M.H. Yoo, Metall. Trans. A 12A, 409 (1981)

    Google Scholar 

  58. G. Liu, R. Xin, F. Liu, Q. Liua, Mater. Des. 107, 503 (2016)

    Google Scholar 

  59. H. Nose, M. Sakane, Y. Tsukada, H. Nishimura, J. Electron. Packag. 125, 59 (2003)

    CAS  Google Scholar 

  60. M. Cole, T. Caulfield, Scr. Metall. Mater. 27, 903 (1992)

    CAS  Google Scholar 

Download references

Acknowledgements

The financial supports of this study from the Ministry of Science and Technology, Taiwan under a grant number of MOST107-2221-E-006-014-MY3 are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KLL; Methodology: JCL; Formal analysis and investigation: JCL and CLL; Writing—original draft preparation: CLL; Writing—review and editing: KLL; Funding acquisition: KLL; Resources: KLL; Supervision: KLL.

Corresponding author

Correspondence to Chien-Lung Liang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JC., Liang, CL. & Lin, KL. Investigations of high-temperature tensile properties of Zn–25Sn–x(0.1–0.2)Cu–y(0.01–0.02)Ti high-temperature Pb-free solders. J Mater Sci: Mater Electron 31, 19318–19331 (2020). https://doi.org/10.1007/s10854-020-04466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04466-5

Navigation