Skip to main content
Log in

Fabrication of an ultra-thin low resistance and high stability Ru–Mo–C seedless barrier for advanced Cu dual-damascene interconnects

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu dual-damascene interconnects with an amorphous Ru–Mo–C (labeled as RuMoC) seedless barrier layer were successfully fabricated and its feasibility for advanced Cu dual-damascene interconnects were investigated. The results show that the RuMoC II films obtained with sputtering rates (Ru:MoC) of 100:50 demonstrated the best performance, exhibiting an amorphous structure, low residual oxygen content, low resistivity at temperatures up to 500 °C. A Cu plug of good quality was successfully electroplated on the RuMoC II barrier layer with 4-nm-thick without seed layer in a damascene structure. The ultra-thin RuMoC II barrier effectively blocked the diffusion of Cu and O atom after being annealed up to 500 °C. The damascene structure showed much lower leakage current and via resistance compared to the damascene structures with traditional Ta barrier, suggesting that RuMoC II film has sufficient barrier properties. Moreover, the via resistance of the damascene structures with RuMoC II barrier were quite low and met the requirement of different technology nodes for the future semiconductor industry, indicating great prospects for advanced seedless Cu metallization applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Hoefflinger, in Chips 2020: A Guide to the Future of Nanoelectronics, ed. by B. Hoefflinger (Springer, Berlin, 2011), pp. 161–174

    Chapter  Google Scholar 

  2. L.Y. Yang, D.H. Zhang, C.Y. Li, P.D. Foo, Thin Solid Films 462–463, 176 (2004)

    Article  Google Scholar 

  3. K. Holloway, P.M. Fryer, C. Cabral, J.M.E. Harper, P.J. Bailey, K.H. Kelleher, J. Appl. Phys. 71, 5433 (1992)

    Article  CAS  Google Scholar 

  4. M. Traving, I. Zienert, E. Zschech, G. Schindler, W. Steinhögl, M. Engelhardt, Appl. Surf. Sci. 252, 11 (2005)

    Article  CAS  Google Scholar 

  5. H. Wojcik, C. Krien, U. Merkel, J.W. Bartha, M. Knaut, M. Geidel, B. Adolphi, V. Neumann, C. Wenzel, M. Bendlin, K. Richter, D. Makarov, Microelectron. Eng. 112, 103 (2013)

    Article  CAS  Google Scholar 

  6. L.C. Leu, D.P. Norton, L. McElwee-White, T.J. Anderson, Appl. Phys. Lett. 92, 1 (2008)

    Article  Google Scholar 

  7. T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, L.C. Chen, Appl. Phys. Lett. 86, 1 (2005)

    Article  Google Scholar 

  8. L.B. Henderson, J.G. Ekerdt, Thin Solid Films 517, 1645 (2009)

    Article  CAS  Google Scholar 

  9. K.C. Hsu, D.C. Perng, J.Bin Yeh, Y.C. Wang, Appl. Surf. Sci. 258, 7225 (2012)

    Article  CAS  Google Scholar 

  10. K.C. Hsu, D.C. Perng, Y.C. Wang, J. Alloys Compd. 516, 102 (2012)

    Article  CAS  Google Scholar 

  11. H. Wojcik, R. Kaltofen, U. Merkel, C. Krien, S. Strehle, J. Gluch, M. Knaut, C. Wenzel, A. Preusse, J.W. Bartha, M. Geidel, B. Adolphi, V. Neumann, R. Liske, F. Munnik, Microelectron. Eng. 92, 71 (2012)

    Article  CAS  Google Scholar 

  12. M. Damayanti, T. Sritharan, S.G. Mhaisalkar, Z.H. Gan, Appl. Phys. Lett. 88, 1 (2006)

    Article  Google Scholar 

  13. U. Jansson, E. Lewin, Thin Solid Films 536, 1 (2013)

    Article  CAS  Google Scholar 

  14. J. Zou, B. Liu, G. Jiao, Y. Lu, Y. Dong, Q. Li, J. Appl. Phys. 120, 95305 (2016)

    Article  Google Scholar 

  15. G. Steinlesberger, M. Engelhardt, G. Schindler, J. Kretz, W. Steinhögl, E. Bertagnolli, Solid State Electron. 47, 1237 (2003)

    Article  CAS  Google Scholar 

  16. S. Kacim, L. Binst, F. Reniers, F. Bouillon, Thin Solid Films 287, 25 (1996)

    Article  CAS  Google Scholar 

  17. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, J. Appl. Phys. 97, 23706 (2005)

    Article  Google Scholar 

  18. J. Zou, B. Liu, G. Jiao, Y. Lu, Y. Dong, Q. Li, J. Appl. Phys. 120, (2016)

  19. G. Jiao, B. Liu, Q. Li, Appl. Phys. A 120, 579 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11605116), the Shenzhen Industry Development Fund Project (Project Nos. JCYJ20150925163313898, JCYJ20160608153308846 and JCYJ20160510154531467) and Youth Innovation Promotion Association, CAS, No. 20160320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Li, Q., Lin, L. et al. Fabrication of an ultra-thin low resistance and high stability Ru–Mo–C seedless barrier for advanced Cu dual-damascene interconnects. J Mater Sci: Mater Electron 29, 10346–10352 (2018). https://doi.org/10.1007/s10854-018-9091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9091-3

Navigation