Skip to main content
Log in

A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, optical and electronic transport properties of chemical vapor deposition (CVD) grown 2D WS2 and MoS2 based transistors and photodetectors are investigated and compared in ambient air by using 2D flakes grown with the same CVD system. To assess the performance variations between these two materials and understand the underlying mechanisms, it is essential to utilize identical growth methods (i.e. using the same CVD system), identical substrate and dielectric materials with the identical device fabrication methods and geometries. Transistor devices fabricated out of these flakes are examined in terms of their field effective mobility, current ON/OFF ratio, and photoresponsivity. Our results show that the MoS2 based devices have higher mobility and photoresponsivity than the WS2 based devices. However, the hysteresis curve of WS2 based transistors is smaller when compared to that of MoS2 based transistors. The mobilities of MoS2 and WS2 are estimated from measurements as 1.45 and 0.98 cm2 V−1 s−1, respectively. The electronic transport performance of MoS2 based devices (FETs and photodetectors) are found to be unexpectedly better than the WS2 based devices in terms of effective carrier mobility and photoresponsivity at ambient atmosphere and temperature. Our results suggest that WS2 is more sensitive to ambient conditions in comparison to MoS2, in spite of its theoretically estimated superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192–200 (2012)

    Article  CAS  Google Scholar 

  3. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347–4379 (2015)

    Article  CAS  Google Scholar 

  4. H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Nano Lett. 13, 3447–3454 (2013)

    Article  CAS  Google Scholar 

  5. A. Özden, H. Şar, A. Yeltik, B. Madenoğlu, C. Sevik, F. Ay, N.K. Perkgöz, Phys. Status Solidi. (RRL) Rapid Res. Lett. 10, 792–796 (2016)

    Article  Google Scholar 

  6. M. Adelifard, R. Salamatizadeh, S. Ketabi, J. Mater. Sci. Mater. Electron. 27, 5243–5250 (2016)

    Article  CAS  Google Scholar 

  7. X. Li, H. Zhu, J. Materiom 1, 33–44 (2015)

    Article  Google Scholar 

  8. W. Brainard, NASA Tech. Note TN D5141, 1–22 (1969)

    Google Scholar 

  9. P.D. Cunningham, K.M. McCreary, A.T. Hanbicki, M. Currie, B.T. Jonker, L.M. Hayden, J. Phys. Chem. C 120, 5819–5826 (2016)

    Article  CAS  Google Scholar 

  10. W. Zhang, Z. Huang, W. Zhang, Y. Li, Nano Res. 7 1731–1737 (2014)

    Article  CAS  Google Scholar 

  11. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat Nanotechnol. 6, 147–150 (2011)

    Article  CAS  Google Scholar 

  12. C. Lan, C. Li, Y. Yin, Y. Liu, Nanoscale 7, 5974–5980 (2015)

    Article  CAS  Google Scholar 

  13. D. Kufer, G. Konstantatos, Nano Lett 15, 7307–7313 (2015)

    Article  CAS  Google Scholar 

  14. F.K. Perkins, A.L. Friedman, E. Cobas, P. Campbell, G. Jernigan, B.T. Jonker, Nano Lett. 13, 668–673 (2013)

    Article  CAS  Google Scholar 

  15. J.-H. Ahn, W.M. Parkin, C.H. Naylor, A.C. Johnson, M. Drndić, Sci. Rep. 7, 4075 (2017)

    Article  Google Scholar 

  16. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Adv. Opt. Mater. 2, 131–136 (2014)

    Article  Google Scholar 

  17. A. Özden, F. Ay, C. Sevik, N.K. Perkgöz, Jpn. J. Appl. Phys. 56, 06GG05 (2017)

    Article  Google Scholar 

  18. W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, P.-H. Tan, 2D Mater. 3, 025016 (2016)

    Article  Google Scholar 

  19. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater. 22, 1385–1390 (2012)

    Article  CAS  Google Scholar 

  20. B. Zhu, X. Chen, X. Cui, Sci. Rep. 5, 9218 (2015)

    Article  Google Scholar 

  21. M. Chhowalla, D. Jena, H. Zhang, Nat. Rev. Mater. 1, 16052 (2016)

    Article  CAS  Google Scholar 

  22. Y. Fan, Y. Zhou, X. Wang, H. Tan, Y. Rong, J.H. Warner, Adv. Opt. Mater. 4, 1573–1581 (2016)

    Article  CAS  Google Scholar 

  23. N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, T. Yu, ACS Nano 8, 11320–11329 (2014)

    Article  CAS  Google Scholar 

  24. S. Mouri, Y. Miyauchi, K. Matsuda, Nano Lett 13, 5944–5948 (2013)

    Article  CAS  Google Scholar 

  25. M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, Appl. Phys. Lett. 102, 193107 (2013)

    Article  Google Scholar 

  26. F. Giannazzo, G. Fisichella, A. Piazza, S. Di Franco, G. Greco, S. Agnello, F. Roccaforte, Beilstein J Nanotechnol 8, 254 (2017)

    Article  CAS  Google Scholar 

  27. A. Nourbakhsh, A. Zubair, S. Joglekar, M. Dresselhaus, T. Palacios, Nanoscale 9, 6122–6127 (2017)

    Article  CAS  Google Scholar 

  28. F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J.C. Ho, Adv. Funct. Mater. 26, 6084–6090 (2016)

    Article  CAS  Google Scholar 

  29. H. Tian, M.L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, M. Dubey, Nano Res. 9, 1543–1560 (2016)

    Article  CAS  Google Scholar 

  30. N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, Adv. Funct. Mater. 23, 5511–5517 (2013)

    Article  Google Scholar 

  31. W. Zhang, J.K. Huang, C.H. Chen, Y.H. Chang, Y.J. Cheng, L.J. Li, Adv. Mater. 25, 3456–3461 (2013)

    Article  CAS  Google Scholar 

  32. N. Perea-López, Z. Lin, N.R. Pradhan, A. Iñiguez-Rábago, A.L. Elías, A. McCreary, J. Lou, P.M. Ajayan, H. Terrones, L. Balicas, 2D Mater. 1, 011004 (2014)

    Article  Google Scholar 

  33. C. Xie, C. Mak, X. Tao, F. Yan, Adv. Funct. Mater. 27, 1603886 (2017)

    Article  Google Scholar 

  34. L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S.P. Lau, Y.H. Tsang, Sci. Rep. 6 (2016)

Download references

Acknowledgements

This work was supported by Anadolu University Research Project Numbers: BAP1705F265, BAP1407F335 and BAP1605F424. A part of this work was supported by the BAGEP Award of the Science Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feridun Ay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şar, H., Özden, A., Yorulmaz, B. et al. A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers. J Mater Sci: Mater Electron 29, 8785–8792 (2018). https://doi.org/10.1007/s10854-018-8895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8895-5

Navigation