Skip to main content

Advertisement

Log in

Effect of modifier on the silver based fast ion conducting glasses for solid state batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fast ion conducting (FIC) glasses of composition 60%AgI-[MAg2O-F{(F1)B2O3-(F2)TeO2}] (SBT2);where M/F = 0–2 in steps of 0.25 for a fixed values of former [F={(F1 = 0.4)+(F2 = 0.6)}]are prepared by melt quenching technique. X-ray diffraction and differential scanning calorimetry studies were carried out understand some structural aspects of the glasses. With increasing the value of M/F ratio upto 1.50 (SBT2-6), the samples exhibited amorphous nature and for further increase of this ratio, crystallinity could be visualized. The electrical properties of these glasses are investigated by impedance spectroscopy in the frequency range 1 kHz–3 MHz and also DC conductivity in the temperature range 303–423 K. The conductivity is observed to increase while the activation energy exhibited decreasing trend with increase of modifier (Ag2O) concentration upto M/F = 1.50. The electrical properties of these glass systems were described as a parallel RC circuit in which R represents the bulk resistance (Rb) and C represents the bulk capacitance (Cb) of the sample. The AC conductivity is also found to increase upto M/F = 1.50. The glasses exhibited high ionic conductivity and near unity ionic transport number, such observation confirms the studied materials are superionic conductors. Overall analysis of the results further indicated the SBT2-6 sample (which is amorphous in nature) that exhibited the highest conductivity with lowest activation energy and high ionic transport number is better useful as solid electrolyte (SE) in solid state batteries (SSBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.V.R. Chowdari, S. Radhakrishna (eds.), Solid State Batteries (World Scientific, Singapore, 1986)

    Google Scholar 

  2. T. Minami, K. Imazuana, M. Tanaka, J. Non-Cryst. Solids 42, 469 (1980)

    Article  CAS  Google Scholar 

  3. W. Vangool (ed.) Fast Ionic Transport in Solids (North-Holland, Amsterdam, 1973)

    Google Scholar 

  4. T. Minami, Y. Jakuma, M. Tanka, J. Electrochem. Soc. 124, 1659 (1977)

    Article  CAS  Google Scholar 

  5. M. Venkateswarlu, K. Narasimha Reddy, B. Rambabu, N. Satyanarayana, Solid State Ionics 127, 177–184 (2000)

    Article  CAS  Google Scholar 

  6. N. Satyanarayana, X. Xie, B. Rambabu, Mater. Sci. Eng. B 72, 7–12 (2000)

    Article  Google Scholar 

  7. A. Agnesh Chandra, A. Bhatt, Chandra, J. Mater. Sci. Technol. 29, 193–208 (2013)

    Article  Google Scholar 

  8. B. Appa Rao, E. Ramesh Kumar, K. Rajani Kumari, G. Bhikshamaiah, AIP Conf. Proc. 1591, 833–835 (2014)

    Google Scholar 

  9. W.T. Shugg, Handbook of Electrical and Electronic Insulating Materials (Van Nostrand Reinhold, New York, 1986)

    Google Scholar 

  10. A. Dalvi, A.M. Awasthi, S. Bharadwaj, K. Shahi, Mater. Sci. Eng. B103, 162–169 (2003)

    Article  CAS  Google Scholar 

  11. A. Dalvi, K. Shahi, Solid State Ionics 148, 431–436 (2002)

    Article  CAS  Google Scholar 

  12. D. Dutta, A. Ghosh, J. Phys. Condens. Matter. 16, 2617–2624 (2004)

    Article  CAS  Google Scholar 

  13. S.A. Suthanthiraraj, R. Kumar, B.J. Paul, V. Mathew, J. Solid State Electrochem. 15, 561–570 (2011)

    Article  CAS  Google Scholar 

  14. K. Singh, Indian J. Pure Appl. Phys. 37, 259–261 (1999)

    CAS  Google Scholar 

  15. T.D. Tho, R.P. Rao, S. Adams, J. Solid State Electrochem. 14, 1863–1867 (2010)

    Article  Google Scholar 

  16. M. Wasiucionek, M. Foltyna, J.E. Garbarczyk, J.L. Nowinski, S. Gierlotka, B. Palosz, Solid State Ionics 179, 1278–1281 (2008)

    Article  CAS  Google Scholar 

  17. S.A. Suthanthiraraj, V. Mathew, Ionics 14, 79–83 (2008)

    Article  CAS  Google Scholar 

  18. S.S. Das, P.K. Srivastava, N.P. Singh, V. Srivastava, Indian J. Eng. Mater. Sci. 17, 123–130 (2010)

    CAS  Google Scholar 

  19. K. Minoru Hanaya, M. Echigo, Oguni, J. Phys. Condens. Matter. 17, 2281–2292 (2005)

    Article  Google Scholar 

  20. B. Roling, J. Non-Cryst. Solids 244, 34–43 (1999)

    Article  CAS  Google Scholar 

  21. A. Hooper, Application of AC Measurement and Analysis Techniques to Materials Research, AERE-R9757, (1980)

  22. S.P.S. Badwal, in Solid State Ionic Devices, ed. by B.V.R. Chowdari, S. Radhakrishna (World Scientific, Singapore, 1988)

    Google Scholar 

  23. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657–2670 (1969)

    Article  CAS  Google Scholar 

  24. J. Kawamura, S. Rikito, M. Shinya, M. Shimoji, Solid State Ionics 25, 155–164 (1987)

    Article  CAS  Google Scholar 

  25. M. Ingram, Phys. Chem. Glass. 28, 215 (1987)

    CAS  Google Scholar 

  26. N. Satynarayana, A. Karthikeyan, M. Venkateswarlu, J. Mater. Sci. 31, 5471–5477 (1996)

    Article  Google Scholar 

  27. B.V.R. Chowdari, R. Gopalkrishana, S.H. Goh, K.L. Tan, J. Mater. Sci. 23, 1248–1254 (1988)

    Article  CAS  Google Scholar 

  28. M.C.R. Sastry, K.J. Rao, Solid State Ionics 44, 187–198 (1991)

    Article  Google Scholar 

  29. C. Narayana Reddy, V.C. Veeranna Gowda, B. Sujatha, Ionics, 12, 159–165 (2006)

    Article  Google Scholar 

  30. J.L. Ndeugueu, M. Aniya, J. Mater. Sci. 44, 2483–2488 (2009)

    Article  CAS  Google Scholar 

  31. F.M. Hafez, Nat. Sci. 11(3), 13–25 (2013)

    Google Scholar 

  32. P. Sharma, D.K. Kanchan, M. Pant, M.S. Jayswal, N. Gondaliya, New J. Glass Ceram. 1, 112–118 (2011)

    Article  CAS  Google Scholar 

  33. D.K. Kanchan, K.P. Padmasree, H.R. Panchal, A.R. Kulkarni, Ceram. Int. 30, 1655–1660 (2004)

    Article  CAS  Google Scholar 

  34. F.A. Abdel-Wahab, G.M. Youssef, A. Abdallah, J. Mater. Sci. 49, 720–728 (2014)

    Article  CAS  Google Scholar 

  35. S.P. Yawalea, V.T. Kharcheb, S.S. Yawalea, Glass Phys. Chem. 34(4), 381–388 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ramesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh Kumar, E., Nageswar Rao, P., Rajani Kumari, K. et al. Effect of modifier on the silver based fast ion conducting glasses for solid state batteries. J Mater Sci: Mater Electron 29, 8446–8455 (2018). https://doi.org/10.1007/s10854-018-8857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8857-y

Navigation