Skip to main content
Log in

Electrical conduction and dielectric properties of Bi2O3–B2O3–TeO2 glass

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Amorphous bulk bismuth boron tellurium glass system of compositions (Bi2O3) x (B2O3)0.5−x (TeO2)0.5 with x = 0.05, 0.1, 0.2, 0.3 and 0.4 is prepared using melt quenching method. The ac and dc conductivities (σ ac and σ dc) of as-prepared samples are measured in the temperature range 303–373 K and displayed dielectric dispersion in the frequency range 100 Hz–5 MHz. The ac conductivity versus frequency plots were analyzed by considering a power law: σ ac α ω s(s ≤ 1). A comparison between values of the index s with those numerically calculated from different conduction models revealed that correlated barrier hopping is a fairly good model to describe the dominant ac conduction mechanism in the studied compositions. Besides, results of the real dielectric constant (ε′), loss factor (ε″), and loss tangent (tan δ) together with the optical (ε ) and static (ε s) dielectric constants, estimated from Cole–Cole diagrams, for the studied samples are given and discussed.

Graphical Abstract

Temperature dependence of the frequency exponent s for the studied amorphous bulk samples obtained from slopes of the relation ln σ ac = f(T). The solid curves represent the values calculated using the models: QMT, NSPT, and OLPT. The dashed curve represents the CBH model, which gives a fairly good fit with the experimental results (symbols) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wright AC, Vedishcheva NM, Shakhmatkin BA (1995) J Non-Cryst Solids 192–193:92

    Article  Google Scholar 

  2. Youngman RE, Haubrich ST, Zwanziger JW, Janicke MT, Chmelka BF (1995) Science 269:1416

    Article  PubMed  CAS  ADS  Google Scholar 

  3. Youngman RE, Zwanziger JW (1994) J Non-Cryst Solids 168:293

    Article  CAS  ADS  Google Scholar 

  4. Rada S, Culea ME (2008) J Non-Cryst Solids 354:5491

    Article  CAS  ADS  Google Scholar 

  5. Konijnendijk WL, Stevels JM (1975) J Non-Cryst Solids 18:30

    Google Scholar 

  6. Neov S, Geramsimova I, Krezhov K, Sidzhimov B, Kozhukharov V (1978) Phys Status Solidi A 47:743

    Article  CAS  ADS  Google Scholar 

  7. Rada S, Rada M, Culea E (2010) Spectrochim Acta A 75:846

    Article  CAS  ADS  Google Scholar 

  8. Rajendran V, Palanivelu N, Chaudhuri BK, Goswami K (2003) J Non-Cryst Solids 320:195

    Article  CAS  ADS  Google Scholar 

  9. Hall DW, Newhouse MA, Borelli NF, Dumbaugh WH, Weidman DL (1989) Appl Phys Lett 54:1293

    Article  CAS  ADS  Google Scholar 

  10. Gerth K, Russesl C (1997) J Non-Cryst Solids 221:10

    Article  CAS  ADS  Google Scholar 

  11. Sammes NM, Tompsett GA, Nafe H, Aldinger F (1999) J Eur Ceram Soc 19:1801

    Article  CAS  Google Scholar 

  12. Hazra S, Ghosh A (1995) Phys Rev B 51:851

    Article  CAS  ADS  Google Scholar 

  13. Baia L, Stefan R, Popp J, Simon S, Kiefer W (2003) J Non-Cryst Solids 324:109

    Article  CAS  ADS  Google Scholar 

  14. Baia L, Kiefer W, Simon S (2004) Rom J Phys 56:481

    CAS  Google Scholar 

  15. Radu A, Baia L, Kiefer W, Simon S (2005) Vib Spectrosc 39:127

    Article  CAS  Google Scholar 

  16. Ghosh A (1990) Phys Rev B 41:1479

    Article  CAS  ADS  Google Scholar 

  17. Jonscher AK (1976) Thin Solid Films 36:1

    Article  CAS  ADS  Google Scholar 

  18. Papathanassiou AN (2002) J Phys D 35:L88

    Article  CAS  ADS  Google Scholar 

  19. Guo YY, Kuo CK, Nicholson PS (1999) Solid State Ion 123:225

    Article  CAS  Google Scholar 

  20. Luo Q, Wang R (1987) J Phys Chem Solids 48:425

    Article  CAS  ADS  Google Scholar 

  21. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials, 2nd edn. Clarendon, Oxford

    Google Scholar 

  22. Singh K (1997) Solid State Ion 93:147

    Article  Google Scholar 

  23. Ali AA, Shaaban MH (2008) Phys B 403:2461

    Article  CAS  ADS  Google Scholar 

  24. Durga DK, Veeraiah N (2002) Phys B 324:127

    Article  CAS  ADS  Google Scholar 

  25. Long R (1982) Adv Phys 31:553

    Article  CAS  ADS  Google Scholar 

  26. Pike GE (1972) Phys Rev B 6:1572

    Article  CAS  ADS  Google Scholar 

  27. Elliot SR (1987) Adv Phys 36:135

    Article  ADS  Google Scholar 

  28. Eilliot SR (1977) Philos Mag B 36:1291

    Article  ADS  Google Scholar 

  29. Fuxi G, He D, Huiming L (1985) J Non-Cryst Solids 52:135

    Google Scholar 

  30. Ghosh A (1990) Phys Rev B 42:5665

    Article  CAS  ADS  Google Scholar 

  31. Debye P (1945) Polar molecules. Dover, New York

    Google Scholar 

  32. Cole RH, Cole KS (1941) J Chem Phys 9:341

    Article  CAS  ADS  Google Scholar 

  33. Fox M (2003) Optical properties of solids, 2nd edn. Oxford University press, Oxford

    Google Scholar 

  34. Abdel-Baki M, Abdel-Wahab FA, Radi A, El-Diasty F (2007) J Phys Chem Solids 68:1457

    Article  CAS  ADS  Google Scholar 

  35. Lee JD (1977) A new concise inorganic chemistry. Van Nostrand Reinhold, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Abdel-Wahab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Wahab, F.A., Youssef, G.M. & Abdallah, A. Electrical conduction and dielectric properties of Bi2O3–B2O3–TeO2 glass. J Mater Sci 49, 720–728 (2014). https://doi.org/10.1007/s10853-013-7753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7753-3

Keywords

Navigation