Skip to main content

Advertisement

Log in

Preparation of SrTiO3-microencapsulated palmitic acid by means of a sol–gel approach as thermal energy storage materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel SrTiO3-microencapsulated palmitic acid (PA) was successfully prepared as a phase change material (PCM) a through a sol–gel approach. The product (PA@ SrTiO3) microcapsules were studied by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometery (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), to gain information on its chemical composition, morphology, crystallinity and structure. Further the thermal properties of the products were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. The data obtained through XRD and FT-IR proved the presence of the peaks characteristic to PA and SrTiO3, proving that these ingredients do not react with one another during the course of preparing the samples. SEM data indicated the microcapsules to have a spherical morphology and rough surfaces, and the average diameters of the particles were found to range from 1.5 to 2 µm. TEM studies also confirmed that the PA was fully encapsulated with SrTiO3. DSC results indicated the microcapsules to undergo phase change behaviors similar o those of pristine PA. Typical samples were found to melt at 66.9 °C, have a latent heat of 48.85 J/g, freeze at 55.7 °C (the latent heat = 43.29 J/g). The microencapsulation ratio of the product was determined as 43.92%. Results of TGA analyses proved that the thermal stability of PA is improved through the encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Sobhani-Nasab, H. Naderi, M. Rahimi-Nasrabadi, M.R. Ganjali, J. Mater. Sci. Mater. Electron. 28, 8588 (2017)

    Article  Google Scholar 

  2. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Appl. Surf. Sci. 423, 1025 (2017)

    Article  Google Scholar 

  3. M. Ramezani, S.M. Pourmortazavi, M. Sadeghpur, A. Yazdani, I. Kohsari, J. Mater. Sci. Mater. Electron. 26, 3861 (2015)

    Article  Google Scholar 

  4. M. Ramezani, A. Sobhani-Nasab, A. Davoodi, J. Mater. Sci. Mater. Electron. 26, 5440 (2015)

    Article  Google Scholar 

  5. A. Baniassadi, B. Sajadi, M. Amidpour, N. Noori, Sustain. Energy Technol. Assess. 14, 92 (2016)

    Google Scholar 

  6. M. Sardarabadi, M. Passandideh-Fard, M.J. Maghrebi, M. Ghazikhani, Sol. Energy Mater. Sol. Cells 161, 62 (2017)

    Article  Google Scholar 

  7. M. Iten, S. Liu, A. Shukla, A review on the air-PCM-TES application for free cooling and heating in the buildings. Renew. Sustain. Energy Rev. 61, 175 (2016)

    Article  Google Scholar 

  8. F. Souayfane, F. Fardoun, P. Biwole, Phase change materials (PCM) for cooling applications in buildings: a review. Energy Build. 129, 396 (2016)

    Article  Google Scholar 

  9. S. Song, L. Dong, Z. Qu, J. Ren, C. Xiong, Appl. Therm. Eng. 70, 546 (2014)

    Article  Google Scholar 

  10. K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67 (2014)

    Article  Google Scholar 

  11. G. Fang, F.T. Cao, Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renew. Sustain. Energy Rev. 40, 237 (2014)

    Article  Google Scholar 

  12. J. Giro-Paloma, M. Martínez, L.F. Cabeza, A.I. Fernández, Renew. Sustain. Energy Rev. 53, 1059 (2016)

    Article  Google Scholar 

  13. L. Liu, G. Alva, X. Huang, G. Fang, Renew. Sustain. Energy Rev. 66, 399 (2016)

    Article  Google Scholar 

  14. E. Elnajjar, Energy Build. 151, 28 (2017)

    Article  Google Scholar 

  15. Z. Qiua, X. Mab, P. Lic, X. Zhaob, A. Wright, Sustain. Energy Rev. 77, 246 (2017)

    Article  Google Scholar 

  16. M. Pomianowski, P. Heiselberg, Y. Zhang, Energy Build. 67, 56 (2013)

    Article  Google Scholar 

  17. N. Şahan, H. Paksoy, Sol. Energy Mater. Sol. Cells 159, 1 (2017)

    Article  Google Scholar 

  18. Y. Konuklua, O. Ersoy, Sol. Energy Mater. Sol. Cells 168, 130 (2017)

    Article  Google Scholar 

  19. L. Cao, F. Tang, G. Fang, Sol. Energy Mater. Sol. Cells 123, 183 (2014)

    Article  Google Scholar 

  20. L.B. Garcia, L. Ventola, R. Cordobilla, R. Benages, T. Calvet, M.A.C. Diarte, Sol. Energy Mater. Sol. Cells 94, 1235 (2010)

    Article  Google Scholar 

  21. H. Pourmohamadian, G.A. Sheikhzadeh, M. Rahimi‑Nasrabadi, H. Basirat Tabrizi, J. Mater. Sci. Mater. Electron. 28, 9990 (2017)

    Article  Google Scholar 

  22. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, S. Afr. J. Chem. 70, 44 (2017)

    Google Scholar 

  23. A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Struct. 1139, 430 (2017)

    Article  Google Scholar 

  24. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, S. Bagheri, J. Cluster Sci. 26, 1305 (2015)

    Article  Google Scholar 

  25. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, J. Mater. Sci. Mater. Electron. 27, 11873 (2016)

    Article  Google Scholar 

  26. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, J. Mater. Sci. Mater. Electron. 27, 13294 (2016)

    Article  Google Scholar 

  27. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, I. Kohsari, S.S. Hajimirsadeghi, J. Therm. Anal. Calorim. 110, 857 (2012)

    Article  Google Scholar 

  28. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Novrouzi, F. Faridbod, M. Sadeghpour Karimi, J. Mater. Sci. Mater. Electron. 28, 3325 (2017)

    Article  Google Scholar 

  29. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M. Sadeghpour Karimi, P. Novrouzi, J. Mater. Sci. Mater. Electron. 28, 5574 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Rahimi-Nasrabadi or Ghanbar Ali Sheikhzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmohamadian, H., Rahimi-Nasrabadi, M., Sheikhzadeh, G.A. et al. Preparation of SrTiO3-microencapsulated palmitic acid by means of a sol–gel approach as thermal energy storage materials. J Mater Sci: Mater Electron 29, 794–800 (2018). https://doi.org/10.1007/s10854-017-7974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7974-3

Navigation