Skip to main content
Log in

Silver tungstate nanostructures: electrochemical synthesis and its statistical optimization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 10 June 2015

Abstract

Silver tungstate (Ag2WO4) nanoparticles were synthesized by a simple electrochemical method with the aid of silver electrode and sodium tungstate as starting reagents. In this study, synthesis conditions of silver tungstate nanoparticles were optimized by Taguchi robust design. Besides, the effects of several synthesis conditions such as tungstate ion concentration, applied voltage, stirring rate, and reaction temperature on the particle size of product were investigated by SEM images. Furthermore, the significance of these factors on the diameter of silver tungstate nanoparticles was evaluated by the analysis of variance and the optimum conditions for the preparation of silver tungstate nanoparticles by electrochemical method was investigated. The resulted nanoparticles were characterized by different routes, i.e., XRD, FTIR, SEM, and PL analysis. Also, the optical band gap corresponding to the resulted Ag2WO4 nanoparticles was predicted to be 2.75 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Zeynali, S.B. Mousavi, S.M. Hosseinpour-Mashkani, Mater. Lett. 144, 65 (2015)

    Article  Google Scholar 

  2. S.M. Hosseinpour-Mashkani, M. Ramezani, Mater. Lett. 130, 259 (2014)

    Article  Google Scholar 

  3. S.M. Hosseinpour-Mashkani, M. Ramezani, M. Vatanparast, Mater. Sci. Semicond. Process. 26, 112 (2014)

    Article  Google Scholar 

  4. S.M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, K. Venkateswara-Rao, Mater. Res. Bull. 47, 3148 (2012)

    Article  Google Scholar 

  5. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009)

    Article  Google Scholar 

  6. D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, J. Chem. Technol. Biotechnol. 77, 102 (2002)

    Article  Google Scholar 

  7. Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, ACS Nano 4, 7303 (2010)

    Article  Google Scholar 

  8. B. Zhou, X. Zhao, H.J. Liu, J.H. Qu, C.P. Huang, Sep. Purif. Technol. 77, 275 (2011)

    Article  Google Scholar 

  9. X.L. He, Y.Y. Cai, H.M. Zhang, C.H. Liang, J. Mater. Chem. 21, 475 (2011)

    Article  Google Scholar 

  10. G.M. Zuo, Z.X. Cheng, H. Chen, G.W. Li, T. Miao, J. Hazard. Mater. 128, 158 (2006)

    Article  Google Scholar 

  11. T.J. Yan, J.L. Long, X.C. Shi, D.H. Wang, Z.H. Li, X.X. Wang, Environ. Sci. Technol. 44, 1380 (2010)

    Article  Google Scholar 

  12. R. Zhang, H. Cui, X. Yang, H. Tang, H. Liu, Y. Li, Micro Nano Lett. 7, 1285 (2012)

    Article  Google Scholar 

  13. T. George, S. Joseph, S. Mathew, Pramana 65, 793 (2005)

    Article  Google Scholar 

  14. D.P. Dutta, A. Singh, A. Ballal, A.K. Tyagi, Eur. J. Inorg. Chem. 2014, 5724 (2014)

    Article  Google Scholar 

  15. J.S. Mckechnie, L.D.S. Tuner, C.A. Vincent, F. Bonino, M. Lazzari, B. Rivolta, J. Inorg. Nucl. Chem. 41, 177 (1979)

    Article  Google Scholar 

  16. S.H. Yu, B. Liu, M.S. Mo, J.H. Huang, X.M. Liu, Y.T. Qian, Adv. Funct. Mater. 13, 639 (2003)

    Article  Google Scholar 

  17. X. Cui, S.H. Yu, L. Li, L. Biao, H. Li, M. Mo, X.M. Liu, Chem. Eur. J. 10, 218 (2004)

    Article  Google Scholar 

  18. P. Wang, B. Huang, X. Zhang, X. Qin, Y. Dai, H. Jin, J. Wei, M.H. Whangbo, Chem. Eur. J. 14, 10543 (2008)

    Article  Google Scholar 

  19. B. Hu, L.H. Wu, S.J. Liu, H.B. Yao, H.Y. Shi, G.P. Li, S.H. Yu, Chem. Commun. 46, 2277 (2010)

    Article  Google Scholar 

  20. R.K. Roy, A Primer on the Taguchi Method (Van Nostrand Reinhold, NewYork, 1990)

    Google Scholar 

  21. C. Karagiozov, D. Momchilova, Chem. Eng. Process. 44, 115 (2005)

    Article  Google Scholar 

  22. S.M. Pourmortazavi, S.S. Hajimirsadeghi, I. Kohsari, S.G. Hosseini, J. Chem. Eng. Data 49, 1530 (2004)

    Article  Google Scholar 

  23. G. Taguchi, Systems of Experimental Design (KRAUS, New York, 1987), pp. 1–2

    Google Scholar 

  24. W.G. Lan, M.K. Wong, N. Chen, Y.M. Sin, Talanta 41, 1917 (1994)

    Article  Google Scholar 

  25. P.J. Ross, Taguchi Techniques for Quality Engineering (Mcgraw-Hill, New York, 1988)

    Google Scholar 

  26. S.M. Pourmortazavi, M. Taghdiri, N. Samimi, M. Rahimi-Nasrabadi, Mater. Lett. 121, 5 (2014)

    Article  Google Scholar 

  27. S.G. Hosseini, S.M. Pourmortazavi, M. Fathollahi, Sep. Sci. Tech. 39, 1953 (2004)

    Article  Google Scholar 

  28. M. Rahimi-Nasrabadi, A.A. Davoudi-Dehaghani, S.M. Pourmortazavi, S.S. Hajimirsadeghi, M.M. Zahedi, Cryst. Eng. Comm. 15, 4077 (2013)

    Article  Google Scholar 

  29. M. Shamsipur, S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Roushani, Colloids Surf. 423, 35 (2013)

    Article  Google Scholar 

  30. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, Mater. Manuf. Process. 24, 524 (2009)

    Article  Google Scholar 

  31. M. Shamsipur, S.M. Pourmortazavi, S.S. Hajimirsadeghi, M.M. Zahedi, M. Rahimi-Nasrabadi, Ceram. Int. 39, 819 (2013)

    Article  Google Scholar 

  32. S.M. Pourmortazavi, S.S. Hajimirsadeghi, I. Kohsari, R. Fareghi Alamdari, M. Rahimi-Nasrabadi, Chem. Eng. Technol. 31, 1532 (2008)

    Article  Google Scholar 

  33. K.D. Kima, D.W. Choia, Y.H. Choaa, H.T. Kim, Colloids Surf. 311, 170 (2007)

    Article  Google Scholar 

  34. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, M.M. Zahedi, Mater. Sci. Semicond. Process. 16, 131 (2013)

    Article  Google Scholar 

  35. P.H. Bottlebergs, H. Everts, G.H.J. Broers, Mater. Res. Bull. 11, 263 (1976)

    Article  Google Scholar 

  36. A.M. Golub, V.I. Maksin, A.A. Kapshuk, S.A. Kirillov, Russ. J. Inorg. Chem. 21, 1310 (1976)

    Google Scholar 

  37. E. Longo, D.P. Volanti, V.M. Longo, L. Gracia, I.C. Nogueira, M.A.P. Almeida, A.N. Pinheiro, M.M. Ferrer, L.S. Cavalcante, J. Andres, J. Phys. Chem. 118, 1229 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Islamic Azad University-Arak branch for financial and other supports provided in the implementation of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramezani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, M., Pourmortazavi, S.M., Sadeghpur, M. et al. Silver tungstate nanostructures: electrochemical synthesis and its statistical optimization. J Mater Sci: Mater Electron 26, 3861–3867 (2015). https://doi.org/10.1007/s10854-015-2912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2912-8

Keywords

Navigation