Skip to main content
Log in

Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dysprosium carbonate nanoparticles were prepared through a direct precipitation method using Dy(NO3)3 and Na2CO3 as a facile, well-regulated and cost-effective technique for the production insoluble salts. Due to the importance of improving the capability and quality of a process for adjusting the size of the product particles the optimal precipitation reaction parameters were evaluated through the Taguchi method. The reaction conditions like the concentrations of the reacting species, the rate of the addition of the reagent as well as the reactor temperature were also optimized based on an orthogonal array design. It was concluded from the results that dysprosium carbonate nanoparticles can be synthesized through the direct carbonation process by controlling the concentration of carbonate ion, the rate of its addition to the reactor and the reaction temperature. Further, a one-step thermal decomposition method was used for the efficient conversion of dysprosium carbonate to dysprosium oxide nanoparticles. The characterization of the products was carried out through XRD, SEM, TEM, FT-IR and thermal analysis techniques. Furthermore, the as-synthesized dysprosium carbonate and dysprosium oxide nanoparticles were used as photocatalyst for the photocatalytic degradation of methylene orange under ultraviolet light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Ahmadi, M. Rajabi, F. Faizi, M. Rahimi-Nasrabadi, B. Maddah, Int. J. Environ. Anal. Chem. 94, 1123 (2014)

    Article  Google Scholar 

  2. A. Ziarati, J. Safaei-Ghomi, S. Rohani, Chin. Chem. Lett. 24, 195 (2013)

    Article  Google Scholar 

  3. V. Arabali, M. Ebrahimi, M. Abbasghorbani, V. Kumar Gupta, M. Farsi, M.R. Ganjali, F. Karimi, J. Mol. Liq. 213, 312 (2016)

    Article  Google Scholar 

  4. M. Amiri, H. Salehniya, A. Habibi-Yangjeh, Ind. Eng. Chem. Res. 55, 8114 (2016)

    Article  Google Scholar 

  5. B. Maddah, S.S. Javadi, A. Mirzaei, M. Rahimi-Nasrabadi, J. Liq. Chromatogr. Relat. Technol. 38, 208 (2015)

    Article  Google Scholar 

  6. H.R. Naderi, M.R. Ganjali, A. Shiralizadeh Dezfuli, P. Norouzi, RSC Adv. 6, 51211 (2016)

    Article  Google Scholar 

  7. H.R. Naderi, M.R. Ganjali, P. Norouzi, Int. J. Electrochem. Sci. 11, 4267 (2016)

    Article  Google Scholar 

  8. J. Tizfahm, M. Aghazadeh, M. Ghannadi Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Mater. Lett. 167, 153 (2016)

    Article  Google Scholar 

  9. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, F. Ahmadi, J. Mol. Struct. 1074, 85 (2014)

    Article  Google Scholar 

  10. M. Pirhashemi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 474, 103 (2016)

    Article  Google Scholar 

  11. B. Golzad-Nonakaran, A. Habibi-Yangjeh, Adv. Powder Technol. 27, 1427 (2016)

    Article  Google Scholar 

  12. S. Vadivel, D. Maruthamani, B. Paul, S.S. Dhar, A. Habibi-Yangjeh, S. Balachandran, B. Saravanakumar, A. Selvakumar, K. Selvam, RSC Adv. 6, 74177 (2016)

    Article  Google Scholar 

  13. A. Akhundi, A. Habibi-Yangjeh, Mater. Chem. Phys. 174, 59 (2016)

  14. S. Vadivel, D. Maruthamani, A. Habibi-Yangjeh, B. Paul, S.S. Dhar, K. Selvam, J. Colloid Interface Sci. 480, 126 (2016)

    Article  Google Scholar 

  15. A.-W. Xu, Y.-P. Fang, L.-P. You, H.-Q. Liu, J. Am. Chem. Soc. 125, 1494 (2003)

    Article  Google Scholar 

  16. J.L. Sommerdijk, A. Bril, J. Electrochem. Soc. 122, 952 (1975)

    Article  Google Scholar 

  17. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776 (2015)

    Google Scholar 

  18. J.P. Jakubovics, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  19. A. Joseph, G.L. Praveen, K. Abha, G.M. Lekha, S. George, J. Lumin. 132, 1999 (2012)

    Article  Google Scholar 

  20. H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42, 1 (2003)

    Article  Google Scholar 

  21. R.P. Rao, J. Electrochem. Soc. 143, 189 (1996)

    Article  Google Scholar 

  22. S. Eridie, R. Roy, Mater. Res. Bull. 30, 145 (1995)

    Google Scholar 

  23. T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, S. Yoshikawa, J. Colloid Interface Sci. 300, 219 (2006)

    Article  Google Scholar 

  24. T.-M. Pan, W.-T. Chang, F.-C. Chiu, Appl. Surf. Sci. 257, 3964 (2011)

    Article  Google Scholar 

  25. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxide (Wiley, New York, 1972)

    Google Scholar 

  26. K. Tanabe, K. Mismo, Y. Ono, H. Hattori, New Solid Acids and Bases (Elsevier, New York, 1989)

    Google Scholar 

  27. M. Chandrasekhar, D.V. Sunitha, N. Dhananjaya, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, Mater. Res. Bull. 47, 2085 (2012)

    Article  Google Scholar 

  28. M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509, 134 (2011)

    Article  Google Scholar 

  29. M. Salavati-Niasari, J. Javidi, F. Davar, A. Amini, Fazl. J. Alloys Compd. 503, 500 (2010)

    Article  Google Scholar 

  30. S.V. Eliseeva, J.C.G. Bünzli, Chem. Soc. Rev. 39, 189 (2010)

    Article  Google Scholar 

  31. J.C.G. Bünzli, Chem. Rev. 110, 2729 (2010)

    Article  Google Scholar 

  32. C.W. Jung, P. Jacobs, Magn. Reson. Imaging 13, 661 (1995)

    Article  Google Scholar 

  33. C.M. Sorensen, Magnetism, in Nanoscale Materials in Chemistry, ed. by K.J. Klabunde (Wiley, New York, 2001), pp. 215–216

    Google Scholar 

  34. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry (Wiley, New York, 1980), pp. 983–985

    Google Scholar 

  35. S. Yin, S. Aktia, M. Shinozaki, R. Li, T. Sato, J. Mater. Sci. 43, 2234 (2008)

    Article  Google Scholar 

  36. G. Wang, Z. Wang, Y. Zhang, G. Fei, L. Zhang, Nanotechnology 15, 1307 (2004)

    Article  Google Scholar 

  37. X.C. Song, Y.F. Zheng, Y. Wang, Mater. Res. Bull. 43, 1106 (2008)

    Article  Google Scholar 

  38. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, J. Mater. Sci. Mater. Electron. 27, 11873 (2016)

    Article  Google Scholar 

  39. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M. Rangraz Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691 (2016)

    Article  Google Scholar 

  40. F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, M. Daneshmand, J. Mater. Sci. Mater. Electron. 27, 9514 (2016)

    Article  Google Scholar 

  41. S.M. Pourmortazavi, M. Taghdiri, N. Samimi, M. Rahimi-Nasrabadi, Mater. Lett. 121, 5 (2014)

    Article  Google Scholar 

  42. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, S.S. Hajimirsadeghi, M.M. Zahedi, J. Mol. Struct. 1047, 31 (2013)

    Article  Google Scholar 

  43. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, S.S. Hajimirsadeghi, M.M. Zahedi, Open Chem. 11, 1393 (2013)

    Article  Google Scholar 

  44. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, H.R. Ghaeni, S.S. Hajimirsadeghi, J. Inorg. Organomet. Polym. Mater. 24, 333 (2014)

    Article  Google Scholar 

  45. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, A.A. Davoudi-Dehaghani, S.S. Hajimirsadeghi, M.M. Zahedi, Cryst. Eng. Comm. 15, 4077 (2013)

    Article  Google Scholar 

  46. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, S.S. Hajimirsadeghi, J. Dispers. Sci. Technol. 33, 254 (2012)

    Article  Google Scholar 

  47. M. Rahimi-Nasarabadi, F. Ahmadi, S. Hamdi, N. Eslami, K. Didehban, M.R. Ganjali, J. Mol. Liq. 216, 814 (2016)

    Article  Google Scholar 

  48. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, I. Kohsari, Synth. React. Inorg. Metal Org. Nano Metal Chem. 42, 746 (2012)

    Google Scholar 

  49. R.K. Roy, A Primer on the Taguchi Method (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  50. P.J. Ross, Taguchi Techniques for Quality Engineering (McGraw-Hill, New York, 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Rahimi-Nasrabadi or Seied Mahdi Pourmortazavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi-Nasrabadi, M., Pourmortazavi, S.M., Ganjali, M.R. et al. Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition. J Mater Sci: Mater Electron 28, 3325–3336 (2017). https://doi.org/10.1007/s10854-016-5926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5926-y

Keywords

Navigation