Skip to main content
Log in

Synthesis and characterization of antimony doped tin oxide aerogel nanoparticles using a facile sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High purity antimony doped tin oxide (ATO) aerogel nanoparticles with various concentrations of Sb have been successfully synthesized using modified sol–gel method. In this process, hydrolysis was slowly released and followed by a thermal drying in supercritical conditions of ethanol. The aim of this study is to enhance the properties of nanoparticles with low doping concentration and low cost. The structural, morphological, optical and electrical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV–Vis–IR spectroscopy, Fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy, respectively. We show that ATO aerogels have a polycrystalline tetragonal rutile structure with a highly (110) plane preferred orientation. The grain sizes are in the range of 13–23 nm, dependending on the elaboration conditions. Raman spectra reveals fundamental peaks at 483, 633, and 770 cm− 1, corresponding to the Eg, A1g and B2g vibration modes, respectively, in a good agreement with those for the rutile bulk SnO2. The optical band gap of tin oxide increases slightly from 3.88 to 3.94 eV with the increase of Sb content. Impedance spectroscopy results indicate that the electrical properties are strongly dependent on temperature and doping rate. All results suggested that the as-prepared ATO nanoparticles were good quality material for thin film solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Tan, L. Wang, Y. Wang, J. Nanomater. 10 (2011)

  2. D.S. Ginley, Handbook of Transparent Conductors. (Springer, New York, 2010)

    Google Scholar 

  3. Ç. Kılıç, A. Zunger, Phys. Rev. lett. 88, 095501 (2002)

    Article  Google Scholar 

  4. R.D. Sakhare, G.D. Khuspe, S.T. Navale, R.N. Mulik, M.A. Chougule, R.C. Pawar, C.S. Lee, S. Sen, V.B. Patil, J. Alloys Compd. 563, 300 (2013)

    Article  Google Scholar 

  5. A.A. Zhukova, M.N. Rumyantseva, V.B. Zaytsev, A.V. Zaytseva, A.M. Abaku-mov, A.M. Gaskov, J. Alloys Compd. 565, 6 (2013)

    Article  Google Scholar 

  6. S. Balaji, R. Vasuki, D. Mutharasu, J. Alloys Compd. 554, 25 (2013)

    Article  Google Scholar 

  7. C. Karunakaran, S. Sakthi Raadha, P. Gomathisankar, J. Alloys Compd. 549, 269 (2013)

    Article  Google Scholar 

  8. E. Elangovan, K. Ramamurthi, Appl. Surf. Sci. 249, 183 (2005)

    Article  Google Scholar 

  9. C. Karunakaran, S. Sakthi Raadha, P. Gomathisankar, J. Alloys Compd. 549, 269 (2011)

    Google Scholar 

  10. N. Talebian, F. Jafarinezhad, Ceram. int. 39, p. 8311 (2013)

    Article  Google Scholar 

  11. X. Zhong, B. Yang, X. Zhang, J. Jia, G. Yi, Particuology 10, 365 (2012)

    Article  Google Scholar 

  12. F. Bai, Y. He, P. He, Y. Tang, Z. Jia, Mater. Lett. 60, 3126 (2006)

    Article  Google Scholar 

  13. Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, J. Alloys Compd. 634, 37 (2015)

    Article  Google Scholar 

  14. L. Lili, M. Liming, D. Xuechen, Mater. Res. Bull. 41, 541 (2006)

    Article  Google Scholar 

  15. H. Huang, M. Ng, Y. Wu, L. Kong, Mater. Design. 88, p. 384 (2015)

    Article  Google Scholar 

  16. M. Seo, Y. Akutsu, H. Kagemoto, Ceram. Int. 33, 625 (2007)

    Article  Google Scholar 

  17. J. Kong, H.M. Deng, P.X. Yang, J.H. Chu, Mater. Chem. Phys. 114, 854 (2009)

    Article  Google Scholar 

  18. C. Terrier, J.P. Chatelon, J.A. Roger, R. Berjoan, C. Dubois, J. Sol Gel Sci. Technol. 10, 75 (1997)

    Article  Google Scholar 

  19. T. Krishnakumar, R. Jayaprakash, N. Pinna, A.R. Phani, M. Passacantando, S. Santucci, J. Phys. Chem. Solids 70, 993 (2009)

    Article  Google Scholar 

  20. E. Abdelkader, L. Nadjia, B. Naceur, B. Noureddine, J. Alloys Compd. 679, 408 (2016)

    Article  Google Scholar 

  21. V.G. Kravets, Opt Spectrosc. 103, 766 (2007)

    Article  Google Scholar 

  22. G.K. Williamson, W.K. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  23. A.S. Riad, S.A. Mahmoud, A.A. Ibrahim, Physica B 296, 319 (2001)

    Article  Google Scholar 

  24. Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, J. Alloys Compd. 634, 37 (2015)

  25. B. Zhang, Y. Tian, J.X. Zhang, W. Cai, Mater. Lett. 65, 1204 (2011)

    Article  Google Scholar 

  26. Q.-P. Tran, J.-S. Fang, T.-S. Chin, Mater. Sci. Semicond. Process 40, 664 (2015)

    Article  Google Scholar 

  27. Z.Y. Banyamin, P.J. Kelly, G. West, J. Boardman, Coatings 4, 732 (2014)

    Article  Google Scholar 

  28. J.M. Xu, L. Li, S. Wang, H.L. Ding, Y.X. Zhang, G.H. Li, Cryst. Eng. Comm. 15, 3296 (2013)

    Article  Google Scholar 

  29. M.L. Singla, M.M. Shafeeq, M. Kumar, J. Lumin. 129, 434 (2009)

    Article  Google Scholar 

  30. F. López Morales, T. Zayas, O.E. Contreras, L. Salgado, Front. Mater. Sci. 7, 387 (2013)

    Article  Google Scholar 

  31. A.P. Alivisatos, Science 271, 933 (1996)

    Google Scholar 

  32. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  33. W. Ben Haj Othmen, N. Sdiri, H.Elhouichet, M. Férid, Mater. Sci. Semicond. Process 52, 46 (2016)

  34. A.R. West, D.C. Sinclair, N. Hirose, J. Electro Ceram. 1, 65 (1997)

    Article  Google Scholar 

  35. A.K. Jonscher, Nature 276, 673 (1977)

    Article  Google Scholar 

  36. N. Haddad, Z. Ben Ayadi, H. Mahdhi, K. Djessas, J. Mater. Sci. Mater. Electron. 28, 15457 (2017)

  37. H. Bottger, U.V. Bryskin, Hopping Conduction in Solids. (Verlag Akademie, Berlin, 1985)

    Google Scholar 

  38. H. Rahmouni, A. Dhahri, K. Khirouni, J.Alloys Compds 591, 259–262 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Haddad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, N., Ayadi, Z.B. & Djessas, K. Synthesis and characterization of antimony doped tin oxide aerogel nanoparticles using a facile sol–gel method. J Mater Sci: Mater Electron 29, 721–729 (2018). https://doi.org/10.1007/s10854-017-7965-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7965-4

Navigation