Skip to main content
Log in

Synthesis and magnetic properties of (Fe, Sn) co-doped In2O3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The iron (Fe) and tin (Sn) co-doped indium oxide (In2O3) nanoparticles at different Fe doping concentrations were prepared by solid state reaction and studied for their structural, optical and magnetic properties. The XRD patterns confirmed the cubic structure of all the undoped and co-doped samples. The average crystallite size decreased on increasing from 41 to 32 nm by increase of Fe doping concentration from 5 to 15 at.%. The optical band gap of the samples was found to decrease from 2.89 to 2.77 eV by increasing the Fe dopant concentration. The magnetic properties of the nanoparticles were studied using vibrating sample magnetometer at room temperature and at 100 K by applying the field ±75,000 Oe perpendicular to the sample. The magnetization increased with increase of applied magnetic field and no saturation was observed in all the samples. The similar behavior was observed for the nanoparticles studied at 100 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, Opt. Commun. (2011). doi:10.1016/j.optcom.2010.12.094

    Article  Google Scholar 

  2. S.H. Babu, S. Kaleemulla, N.M. Rao, C. Krishnamoorthi, J. Electron. Mater. (2016). doi:10.1007/s11664-016-4795-8

    Article  Google Scholar 

  3. S.H. Babu, S. Kaleemulla, N.M. Rao, G.V. Rao, C. Krishnamoorthi, Physica B (2016). doi:10.1016/j.physb.2016.07.037

    Article  Google Scholar 

  4. J.T. McCue, J.Y. Ying, Chem. Mater. (2007). doi:10.1021/cm0617283

    Article  Google Scholar 

  5. H.T. Ng, A. Fang, L. Huang, S.F.Y. Li, Langmuir (2002). doi: 10.1021/la0255828

    Article  Google Scholar 

  6. K. Sreenivas, T.S. Rao, A. Mansingh, S. Chandra, J. Appl. Phys. (1985). doi:10.1063/1.335481

    Article  Google Scholar 

  7. F. Cai, L. Zhu, H. He, J. Li, Y. Yang, X. Chen, Z. Ye, J. Alloys Compd. (2011). doi:10.1016/j.jallcom.2010.09.016

    Article  Google Scholar 

  8. D. Oh, Y.S. No, S.Y. Kim, W.J. Cho, K.D. Kwack, T.W. Kim, J. Alloys Compd. (2011). doi:10.1016/j.jallcom.2010.10.180

    Article  Google Scholar 

  9. Y. Wang, Y. Gu, T. Wang, W. Shi, J. Alloys Compd. (2011). doi:10.1016/j.jallcom.2011.02.175

    Article  Google Scholar 

  10. R.J. Deokate, S.V. Salunkhe, G.L. Agawane, B.S. Pawar, S.M. Pawar, K.Y. Rajpure, A.V. Moholkar, J.H. Kim, J. Alloys Compd. (2010). doi:10.1016/j.jallcom.2010.01.150

    Article  Google Scholar 

  11. Z. Deng, X. Fang, R. Tao, W. Dong, D. Li, X. Zhu, J. Alloys Compd. (2008). doi:10.1016/j.jallcom.2007.11.064

    Article  Google Scholar 

  12. S. Kaleemulla, N.M. Rao, M.G. Joshi, A.S. Reddy, S. Uthanna, P.S. Reddy, J. Alloys Compd. (2010). doi:10.1016/j.jallcom.2010.05.068

    Article  Google Scholar 

  13. D. Kim, J. Alloys Compd. (2010). doi:10.1016/j.jallcom.2009.12.056

    Article  Google Scholar 

  14. A.A. Yadav, E.U. Masumdar, A.V. Moholkar, M. Neumann-Spallart, K.Y. Rajpure, C.H. Bhosale, J. Alloys Compd. (2009). doi:10.1016/j.jallcom.2009.08.130

    Article  Google Scholar 

  15. V.I. Anisimov, M.A. Korotin, I.A. Nekrasov, A.S. Mylnikova, A.V. Lukoyanov, J.L. Wang, Z. Zeng, J. Phys. Condens. Matter 18, 1695 (2006)

    Article  CAS  Google Scholar 

  16. W. Ponhan, V. Amornkitbamrung, S. Maensiri, J. Alloys Compd. (2014). doi:10.1016/j.jallcom.2014.03.113

    Article  Google Scholar 

  17. N.S. Krishna, S. Kaleemulla, G. Amarendra, N.M. Rao, C. Krishnamoorthi, M. Kuppan, M.R. Begam, D.S. Reddy, I. Omkaram, Mater. Res. Bull. (2015). doi:10.1016/j.materresbull.2014.10.065

    Article  Google Scholar 

  18. M. Kuppan, S. Kaleemulla, N.M. Rao, N.S. Krishna, M.R. Begam, M. Shobana, Adv. Condens. Matter Phys. (2014). doi:10.1155/2014/284237

    Article  Google Scholar 

  19. K. Nomura, C.A. Barrero, J. Sakuma, M. Takeda, Phys. Rev. B (2007). doi:10.1103/PhysRevB.75.184411

    Article  Google Scholar 

  20. B.D. Cullity, Introduction to Magnetic Materials. (Addison-Wesley, Reading, 1972)

    Google Scholar 

  21. A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, A.K. Tyagi, J. Phys. Chem. C 113, 3600–3606 (2009)

    Article  CAS  Google Scholar 

  22. J. Tauc, Amorphous and Liquid Semiconductors. (Plenum Press, New York, 1974)

    Book  Google Scholar 

  23. D. Channei, A. Nakaruk, S. Phanichphant, P. Koshy, C.C. Sorrell, J. Sol-Gel. Sci. Technol. (2016). doi:10.1007/s10971-016-4028-x

    Article  Google Scholar 

  24. Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, J. Phys. Chem. C (2007). doi:10.1021/jp0727493

    Article  Google Scholar 

  25. S.-C. Ke, T.-C. Wang, M.-S. Wong, N.O. Gopal, J. Phys. Chem. B (2006). doi:10.1021/jp0612578

    Article  Google Scholar 

  26. J. Nowotny, C.C. Sorrell, L.R. Sheppard, T. Bak, Int. J. Hydrogen Energy (2005). doi:10.1016/j.ijhydene.2004.06.012

    Article  Google Scholar 

  27. X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung, R. Lortz, J.A. Zapien, A. Ruotolo, Appl. Phys. Lett. (2013). doi:10.1063/1.4795797

    Article  Google Scholar 

  28. J. Gao, R. Chen, D.H. Li, L. Jiang, J.C. Ye, X.C. Ma, X.D. Chen, Q.H. Xiong, H.D. Sun, T. Wu, Nanotechnology (2011). doi: 10.1088/0957-4484/22/19/195706

    Article  Google Scholar 

  29. B.F. Xin, L.Q. Jing, H.G. Fu, Z.H. Sun, Z.Y. Ren, B.Q. Wang, W.M. Cai, Gaodeng Xuexiao Huaxue Xuebao/Chem. J. Chin. Univ. (2004). doi:10.1016/j.jssc.2004.05.064

    Article  Google Scholar 

  30. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C. Ian Wang, Y. Shen, Y. Tong, Sci. Rep. (2013). doi:10.1038/srep01021

    Article  Google Scholar 

  31. S. Dussan, M.K. Singh, A. Kumar, R.S. Katiyar, Integr. Ferroelectr. (2011). doi: 10.1080/10584587.2011.574483

    Article  Google Scholar 

  32. K. Mcguire, Z.W. Pan, Z.L. Wang, D. Milkie, J. Menendez, A.M. Rao, J. Nanosci. Nanotechnol. (2002). doi:10.1166/jnn.2002.129

    Article  Google Scholar 

  33. B. Santara, B. Pal, P.K. Giri, J. Appl. Phys. (2011). doi:10.1063/1.3665883

    Article  Google Scholar 

  34. N.S. Krishna, S. Kaleemulla, G. Amarendra, N.M. Rao, C. Krishnamoorthi, M.R. Begam, I. Omkaram, D.S. Reddy, J. Alloys Compd. (2015). doi:10.1016/j.jallcom.2015.02.167

    Article  Google Scholar 

  35. R.N. Bhowmik, R. Nagarajan, R. Ranganathan, Phys. Rev. B (2004). doi:10.1103/PhysRevB.69.054430

    Article  Google Scholar 

  36. M. Kuppan, S. Kaleemulla, N.M. Rao, N.S. Krishna, M.R. Begam, D.S. Reddy, J. Supercond. Novel Magn. 27, 1315–1321 (2014)

    Article  CAS  Google Scholar 

  37. S.H. Babu, N.S. Krishna, S. Kaleemulla, N.M. Rao, M. Kuppan, C. Krishnamoorthi, G.M. Joshi, G.A. Basheed, R. Chitra, S. Bhattacharya, N.K. Sahoo, AIP Conf. Proc. 1731, 120003 (2016)

    Article  Google Scholar 

  38. A. Rostamnejadi, P. Kameli, arXiv:0907.2815 (2009). doi: 10.1007/s10948-011-1378-z

  39. R.N. Bhowmik, A. Saravanan, J. Appl. Phys. (2010). doi:10.1063/1.3327433

    Article  Google Scholar 

  40. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241–255 (1958)

    Article  CAS  Google Scholar 

  41. J. Liu, H. Cao, J. Xiong, Z. Cheng, CrystEngComm (2012). doi: 10.1039/C2CE25578B

    Article  Google Scholar 

  42. C. Frandsen, S. Mørup, Phys. Rev. Lett. (2005). doi:10.1209/epl/i2000-00426-2

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to UGC-DAE-CSR, IGCAR, Kalpakkam, 603102, Tamilnadu, India for providing financial support under Project Sanction number (CSR-KN/CRS-72/2015-2016/809) to carry out the present work. The authors are highly thankful to VIT-SIF for providing, XRD, PL spectrometer and DRS facilities to carry out the present work. The authors are also thankful to UGC-DAE-CSR, IGCAR for providing VSM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaleemulla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., Kaleemulla, S., Rao, N.M. et al. Synthesis and magnetic properties of (Fe, Sn) co-doped In2O3 nanoparticles. J Mater Sci: Mater Electron 28, 18977–18985 (2017). https://doi.org/10.1007/s10854-017-7851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7851-0

Navigation