Skip to main content
Log in

Studies on Ferromagnetic and Photoluminescence Properties of ITO and Cu-Doped ITO Nanoparticles Synthesized by Solid State Reaction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cubic structured indium-tin-oxide (ITO) and copper-doped ITO nanoparticles were synthesized by solid state reaction. The structure, morphology, chemical, magnetic, and photoluminescence properties of the synthesized nanoparticles were studied by x-ray diffraction, field emission scanning electron microscopy, x-ray photoelectron spectroscopy, vibrating sample magnetometry, and photoluminescence spectrophotometry, respectively. Magnetic studies confirmed that the ITO nanoparticles were ferromagnetic at room temperature (300 K) and at 100 K, and it was believed that the observed ferromagnetism may be due to oxygen vacancies and defects present in the system. No hysteresis loop was observed in copper-doped ITO nanoparticles at room temperature and 100 K. The ITO and Cu-doped ITO nanoparticles exhibited two broad emission peaks in the visible region of the electromagnetic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Kim, K. Bae, and S. Sohn, Jpn. J. Appl. Phys. 50, 45801 (2011).

    Article  Google Scholar 

  2. J.W. Seo, J.-W. Park, K.S. Lim, J.H. Yang, and S.J. Kang, Appl. Phys. Lett. 93, 223505 (2008).

    Article  Google Scholar 

  3. H. Han, J.W. Mayer, and T.L. Alford, J. Appl. Phys. 99, 123711 (2006).

    Article  Google Scholar 

  4. H. Han, D. Adams, J.W. Mayer, and T.L. Alford, J. Appl. Phys. 98, 083705 (2005).

    Article  Google Scholar 

  5. G. Li, C.W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).

    Article  Google Scholar 

  6. K.P. Sibin, N. Swain, P. Chowdhury, A. Dey, N. Sridhara, H.D. Shashikala, A.K. Sharma, and H.C. Barshilia, Sol. Energ. Mat. Sol. Cells 145, 314 (2015).

    Article  Google Scholar 

  7. N. Formica, P.M. Perez, D.S. Ghosh, D. Janner, T.L. Chen, M. Huang, S. Garner, J. Martorell, and V. Pruneri, ACS Appl. Mater. Interfaces 7, 4541 (2015).

    Article  Google Scholar 

  8. N.S. Krishn, S. Kaleemulla, G. Amarendra, N.M. Rao, C. Krishnamoorthi, I. Omkaram, and D.S. Reddy, J. Mater. Sci.: Mater. Electron. 26, 8635 (2015).

    Google Scholar 

  9. K. Utsumi, O. Matsunaga, and T. Takahata, Thin Solid Films 334, 30 (1998).

    Article  Google Scholar 

  10. O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, J. Phys. D Appl. Phys. 43, 055402 (2010).

    Article  Google Scholar 

  11. H. Koseoglu, F. Turkoglu, M. Kurt, M.D. Yaman, F.G. Akca, G. Aygun, and L. Ozyuzer, Vacuum 120, 8 (2015).

    Article  Google Scholar 

  12. J. Philip, N. Theodoropoulou, G. Berera, J.S. Moodera, and B. Satpati, Appl. Phys. Lett. 85, 777 (2004).

    Article  Google Scholar 

  13. J.M.D. Coey, M. Venkatesan, and C.B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  Google Scholar 

  14. J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. Leclair, T.S. Santos, and J.S. Moodera, Nat. Mater. 5, 298 (2006).

    Article  Google Scholar 

  15. T. Ohno, T. Kawahara, H. Tanaka, T. Kawai, M. Oku, K. Okada, and S. Kohiki, Jpn. J. Appl. Phys. 45, L957 (2006).

    Article  Google Scholar 

  16. G. Peleckis, X. Wang, and S.X. Dou, Appl. Phys. Lett. 89, 022501 (2006).

    Article  Google Scholar 

  17. G.G. Khan, S. Ghosh, A. Sankar, G. Mandal, G.D. Mukherjee, U. Manju, N. Banu, and B.N. Dev, Appl. Phys. Lett. 118, 074303 (2015).

    Google Scholar 

  18. T. Nakamura, S. Isozaki, K. Tanabe, and K. Tachibana, J. Appl. Phys. 105, 07C511 (2009).

    Google Scholar 

  19. M. Venkatesan, R.D. Gunning, P. Stamenov, and J.M.D. Coey, J. Appl. Phys. 103, 07D135 (2008).

    Article  Google Scholar 

  20. A.M.H.R. Hakimi, F. Schoofs, R. Bali, N.A. Stelmashenko, M.G. Blamire, S. Langridge, S.A. Cavill, G. van der Laan, and S.S. Dhesi, Phys. Rev. B 82, 144429 (2010).

    Article  Google Scholar 

  21. Y.K. Yoo, Q. Xue, H.C. Lee, S. Cheng, X.D. Xiang, G.F. Dionne, S. Xu, J. He, Y.S. Chu, S.D. Preite, S.E. Lofl, and I. Takeuchi, Appl. Phys. Lett. 86, 042506 (2005).

    Article  Google Scholar 

  22. R.K. Singhal, M.S. Dhawan, S.K. Gaur, S.N. Dolia, S. Kumar, T. Shripathi, U.P. Deshpande, Y.T. Xing, E. Saitovitch, and K.B. Garg, J. Alloys Compd. 477, 379 (2009).

    Article  Google Scholar 

  23. C.B. Fitzgerald, M. Venkatesan, L.S. Dorneles, R. Gunning, P. Stamenov, J.M.D. Coey, P.A. Stampe, R.J. Kennedy, E.C. Moreira, and U.S. Sias, Phy. Rev. B 74, 115307 (2006).

    Article  Google Scholar 

  24. H.L. Liu, J.H. Yang, Z. Hua, Y.J. Zhang, L.L. Yang, L. Xiao, and Z. Xie, Appl. Surf. Sci. 256, 4162 (2010).

    Article  Google Scholar 

  25. A. Tiwari, M. Snure, D. Kumar, and J.T. Abiade, Appl. Phys. Lett. 92, 062509 (2008).

    Article  Google Scholar 

  26. B.D. Cullity, Elements of X-ray Diffraction (Reading: Addison-Wesley, 1972).

    Google Scholar 

  27. P. Rai, R. Khan, S. Raj, S.M. Majhi, K.K. Park, Y.T. Yu, I.H. Lee, and P.K. Sekhar, Nanoscale 6, 581 (2014).

    Article  Google Scholar 

  28. N. Yamada, I. Yasui, Y. Shigesato, H. Li, Y. Ujihira, and K. Nomura, Jpn. J. Appl. Phys. 38, 2856 (1999).

    Article  Google Scholar 

  29. Y. Zuo, S. Ge, Z. Yu, S. Yan, X. Zhou, and L. Zhang, Appl. Surf. Sci. 256, 6013 (2010).

    Article  Google Scholar 

  30. F. Zeng, X. Zhang, J. Wang, L.S. Wang, and L. Zhang, Nanotechnology 15, 596 (2004).

    Article  Google Scholar 

  31. B. Xia, Y. Wu, H.W. Ho, C. Ke, W.D. Song, C.H.A. Huan, J.L. Kuo, W.G. Zhu, and L. Wang, Phys. B 406, 3166 (2011).

    Article  Google Scholar 

  32. G.G. Khan, S. Ghosh, A. Sankar, G. Mandal, G.D. Mukherjee, U. Manju, N. Banu, and B.N. Dev, Appl. Phys. Lett. 118, 074303 (2015).

    Google Scholar 

  33. T. Taniguchi, K. Yamaguchi, A. Shigeta, Y. Matsuda, S. Hayami, T. Shimizu, T. Matsui, T. Yamazaki, A. Funatstu, Y. Makinose, N. Matsushita, M. Koinuma, and Y. Matsumoto, Adv. Funct. Mater. 23, 3140 (2013).

    Article  Google Scholar 

  34. J. Gao, R. Chen, D.H. Li, L. Jiang, J.C. Ye, X.C. Ma, X.D. Chen, Q.H. Xiong, H.D. Sun, and T. Wu, Nanotechnolgy 22, 195706 (2011).

    Article  Google Scholar 

  35. C.L. Hsin, J.H. He, and L.J. Chen, Appl. Phys. Lett. 88, 063111 (2006).

    Article  Google Scholar 

  36. Y. Ohhata, F. Shinoki, and S. Yoshida, Thin Solid Films 59, 255 (1979).

    Article  Google Scholar 

  37. P. Prathap, A.S. Dahiya, M. Srivastava, S.K. Srivastava, B. Sivaiah, D. Haranath, Vandana, Ritu Srivastava, C.M.S. Rauthan, and P.K. Singh, Sol. Energy 106, 102 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaleemulla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, S.H., Kaleemulla, S., Rao, N.M. et al. Studies on Ferromagnetic and Photoluminescence Properties of ITO and Cu-Doped ITO Nanoparticles Synthesized by Solid State Reaction. J. Electron. Mater. 45, 5703–5708 (2016). https://doi.org/10.1007/s11664-016-4795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4795-8

Keywords

Navigation