Skip to main content
Log in

Excellent photocatalytic activity of titania–graphene nanocomposites prepared by a facile route

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Herein, we have presented a facile route for the in situ preparation of titania–graphene nanocomposites having excellent photocatalytic activity. Titania sol is incorporated into graphene oxide sheets, and the resultant mixture is solvothermally treated to attain titania-reduced graphene oxide composites without the use of any additional reducing agents. The well alignment of the anatase titania nanoparticles over individual graphene layers was confirmed using various characterization techniques, such as X-ray diffraction, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy. The photocatalysts showed complete degradation of methyl orange within short duration of UV irradiation. The best catalyst, with TiO2 nanoparticles dispersed over 2 wt% graphene sheets, showed remarkable reusability where the activity remained unaffected till four repeated cycles. The facile method of preparation, graphene oxide reduction without the aid of any reducing agent, excellent photodegradation of methyl orange within short duration and reusability of the catalyst are the foremost attractions of present photocatalysts.

Graphical Abstract

Facile fabrication of titania–graphene nanocomposites, for the photocatalytic degradation of methyl orange dye, is achieved under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yajun W, Rui S, Lin J, Zhu Y (2010) Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl Catal B Environ 100:179–183

    Article  Google Scholar 

  2. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    Article  Google Scholar 

  3. Teruhisa H, Atsushi Y (2011) Thermal influence on the structure and photocatalytic activity of mesoporous titania consisting of TiO2 (B). Microporous Mesoporous Mater 142:316–321

    Article  Google Scholar 

  4. Fujishima A, Zhang X, Donald AT (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  Google Scholar 

  5. Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. C R Chim 9:750–760

    Article  Google Scholar 

  6. Silija PP, Zahira Y, Binitha NN, Resmi R, Suraja PV (2012) Novel preparation method of nanosilver doped sol gel TiO2 photocatalysts for dye pollutant degradation. J Sol-Gel Sci Technol 63:108–115

    Article  Google Scholar 

  7. Gao Y, Fang P, Chen F, Liu Y, Liu Z, Wang D, Dai Y (2013) Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Appl Surf Sci 265:796–801

    Article  Google Scholar 

  8. Qin H, Gu G, Liu S (2007) Preparation of nitrogen-doped titania and its photocatalytic activity. Rare Met 26:254–262

    Article  Google Scholar 

  9. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  Google Scholar 

  10. Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, Neophytides SG, Falaras P (2003) Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl Catal B Environ 42:187–201

    Article  Google Scholar 

  11. Zhao H, Su F, Fan X, Yu H, Wu D, Quan X (2012) Graphene-TiO2 composite photocatalyst with enhanced photocatalytic performance. Chin J Catal 33:777–782

    Article  Google Scholar 

  12. Litter MI (1999) Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B Environ 23:89–114

    Article  Google Scholar 

  13. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425

    Article  Google Scholar 

  14. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008

    Article  Google Scholar 

  15. Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48:1103–1111

    Article  Google Scholar 

  16. Michael KS, Reenamole G, Patrick F, Suresh CP (2007) Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol, A 189:258–263

    Article  Google Scholar 

  17. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129:4538–4539

    Article  Google Scholar 

  18. Kim S, Hwang SJ, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267

    Article  Google Scholar 

  19. Du A, Ng YH, Bell NJ, Zhu Z, Amal R, Smith SC (2011) Hybrid graphene/titania nanocomposite: interface charge transfer, hole doping, and sensitization for visible light response. J Phys Chem Lett 2:894–899

    Article  Google Scholar 

  20. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  21. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwa MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  Google Scholar 

  22. Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4:5792–5813

    Article  Google Scholar 

  23. Wang W, Yu J, Xiang Q, Cheng B (2012) Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Appl Catal B Environ 119–120:109–116

    Article  Google Scholar 

  24. Tan LL, Ong WJ, Chai SP, Mohamed AR (2013) Reduced graphene oxide–TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res Lett 8:465–474

    Article  Google Scholar 

  25. Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2011) One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem 21:3415–3421

    Article  Google Scholar 

  26. Liu S, Sun H, Liu S, Wang S (2013) Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem Eng J 214:298–303

    Article  Google Scholar 

  27. Liu J, Liu L, Bai H, Wang Y, Sun DD (2011) Gram-scale production of graphene oxide–TiO2 nanorod composites: towards high-activity photocatalytic materials. Appl Catal B Environ 106:76–82

    Article  Google Scholar 

  28. Liu S, Liu C, Wang W, Cheng B, Yu J (2012) Unique photocatalytic oxidation reactivity and selectivity of TiO2–graphene nanocomposites. Nanoscale 4:3193–3200

    Article  Google Scholar 

  29. Shi M, Shen JF, Ma H, Li Z, Lu X, Li N, Ye M (2012) Preparation of graphene–TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Colloid Surf A 405:30–37

    Article  Google Scholar 

  30. Williams G, Seger B, Kamat PV (2008) TiO2–graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Article  Google Scholar 

  31. Sun J, Zhang H, Guo LH, Zhao L (2013) Two-dimensional interface engineering of a titania–graphene nanosheet composite for improved photocatalytic activity. ACS Appl Mater Interfaces 5:13035–13041

    Article  Google Scholar 

  32. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  33. Perera SD, Mariano RG, Nijem N, Chabal Y, Ferraris JP, Balkus KJ (2012) Alkaline deoxygenated graphene oxide for supercapacitor applications: an effective green alternative for chemically reduced graphene. J Power Sources 215:1–10

    Article  Google Scholar 

  34. Stengl V, Popelkova D, Vlacil P (2011) TiO2–graphene nanocomposite as high performace photocatalysts. J Phys Chem C 115:25209–25218

    Article  Google Scholar 

  35. Zhang Y, Tang Z, Fu X, Xu YJ (2010) TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano 4:7303–7314

    Article  Google Scholar 

  36. Wang X, Lim TT (2010) Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Appl Catal B Environ 100:355–364

    Article  Google Scholar 

  37. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  38. Pawar RC, Lee CS (2014) Single-step sensitization of reduced graphene oxide sheets and CdS nanoparticles on ZnO nanorods as visible-light photocatalysts. Appl Catal B Environ 144:57–65

    Article  Google Scholar 

  39. Lu D, Zhang Y, Lin S, Wang L, Wang C (2013) Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. J Alloy Compd 579:336–342

    Article  Google Scholar 

  40. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng HM (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21:1717–1722

    Article  Google Scholar 

  41. Cheng P, Yang Z, Wang H, Cheng W, Chen MX, Shangguan WF (2012) TiO2 graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrogen Energy 37:2224–2230

    Article  Google Scholar 

  42. Zhang X, Sun Y, Cui X, Jiang Z (2012) A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. Int J Hydrogen Energy 37:811–815

    Article  Google Scholar 

  43. Zhou Y, Bao Q, Tang L, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956

    Article  Google Scholar 

  44. Dang H, Dong X, Dong Y, Huang J (2013) Facile and green synthesis of titanate nanotube/graphene nanocomposites for photocatalytic H2 generation from water. Int J Hydrogen Energy 38:9178–9185

    Article  Google Scholar 

  45. Xiang QJ, Yu JG, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene–modified titania nanosheets. Nanoscale 3:3670–3678

    Article  Google Scholar 

  46. Liang D, Cui C, Hu H, Wang Y, Xu S, Ying B, Li P, Lu B, Shen H (2014) One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. J Alloy Compd 582:236–240

    Article  Google Scholar 

  47. Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870

    Article  Google Scholar 

  48. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ (2012) Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956

    Article  Google Scholar 

  49. Wojtoniszak M, Zielinska B, Chen X, Kalenczuk RJ, Palen EB (2012) Synthesis and photocatalytic performance of TiO2 nanospheres–graphene nanocomposite under visible and UV light irradiation. J Mater Sci 47:3185–3190

    Article  Google Scholar 

  50. Niu F, Liu JM, Tao LM, Wang W, Guo Song W (2013) Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J Mater Chem A 1:6130–6133

    Article  Google Scholar 

  51. Liu J, Xu S, Liu L, Sun DD (2013) The size and dispersion effect of modified graphene oxide sheets on the photocatalytic H2 generation activity of TiO2 nanorods. Carbon 60:445–452

    Article  Google Scholar 

  52. Gomez NC, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503

    Article  Google Scholar 

  53. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge UKM, Grant Number AP-2012-008 UKM, for financial support and FST, CRIM, IMEN and FCI for material analysis. Silija Padikkaparambil thanks UGC, New Delhi, India, for the fellowship under the scheme “Post-Doctoral Fellowship for SC/ST students.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahira Yaakob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, A., Binitha, N.N., Yaakob, Z. et al. Excellent photocatalytic activity of titania–graphene nanocomposites prepared by a facile route. J Sol-Gel Sci Technol 80, 189–200 (2016). https://doi.org/10.1007/s10971-016-4058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4058-4

Keywords

Navigation