Skip to main content
Log in

Structural, dielectric, impedance and modulus spectroscopy of Bi2NdTiVO9 ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Detailed studies of electrical and resistive properties of Bi2NdTiVO9 (a member of the Aurivillius family), fabricated by a method of standard high-temperature solid-state reaction, are discussed here. The compound crystallizes in the orthorhombic crystal structure. The surface morphology studies show a uniform distribution of grains. The single semicircle of the complex impedance plot and the value of the nonlinear coefficient of the J∼E graph suggest that the polarization in the material is due to grain effect only. The semiconducting nature (i.e., negative temperature coefficient of resistance) is observed in the temperature dependence of bulk resistance and J–E characteristics of the sample. The frequency dependence of impedance and electrical modulus of the material shows the existence of non Debye-type of relaxation. The activation energy obtained from the relaxation and conduction processes is found to support the activation of oxygen vacancies in the compound. An analysis of ac conductivity, based on the Jonscher’s power law, suggests that the conduction mechanism in the material can be explained using CBH model (i.e., hopping of oxygen ions between vacancies). The nature and existence of electric field dependent polarization (P–E hysteresis loop) at room temperature show that the material has ferroelectric property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.R. Kendall, C. Navas, J.K. Thomas, H.C. Zur, Loye, Chem. Mater. 8, 642 (1996)

    Article  Google Scholar 

  2. E.C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962)

    Article  Google Scholar 

  3. H. Amorin, V.V. Shartsman, A.L. Kholkin, E.V. Costa, Appl. Phys. Lett. 85, 5667 (2004)

    Article  Google Scholar 

  4. Ismunandar, B.J. Kennedy, J. Mater. Chem. 9, 541 (1999)

    Article  Google Scholar 

  5. J.D. Bobic, M.M. Vijatovic, S. Greicius, J. Banys, B.D. Stojanovic, J. Alloy. Compd. 499, 221 (2010)

    Article  Google Scholar 

  6. C.A.P. de Araujo, J.D. Cuchaiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627 (1995)

    Article  Google Scholar 

  7. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Rev. Appl. Acoust. 41, 299 (1994)

    Article  Google Scholar 

  8. R.L. Withers, J.G. Thompson, A.D. Rae, J. Solid State Chem. 94, 404 (1991)

    Article  Google Scholar 

  9. C. Jovaleki, M. Pavlovi, P. Osmokrovi, L. Atanasoska, Appl. Phys. Lett. 72, 1051 (1998)

    Article  Google Scholar 

  10. Z.Y. Zhou, X.L. Dong, H.X. Yan, H. Chen, C.L. Mao, J. Appl. Phys. 100, 044112 (2006)

    Article  Google Scholar 

  11. H.C. Du, S. Wohlrab, S. Kaskel, J. Phys. Chem. C 111, 11095 (2007)

    Article  Google Scholar 

  12. H.C. Du, L.J. Tang, S. Kaskel, J. Phys. Chem. C 113, 1329 (2009)

    Article  Google Scholar 

  13. H.T. Zhang, H.X. Yan, M.J. Reece, J. Appl. Phys. 106, 0441061 (2009)

    Google Scholar 

  14. L. Yan, L.B. Kong, C.K. Ong, Mater. Lett. 58, 2953 (2004)

    Article  Google Scholar 

  15. H. Xiaogu, Z. Jing, L. Min, S. Tianyi, J. Alloys Compd. 627, 367 (2015)

    Article  Google Scholar 

  16. H. Yanfei, G. Rongzhou, L. Xiang Cheng, W. Xian, D. Qifa Hu, EPL 292, 77 (2007)

    Google Scholar 

  17. Z. Xiao-Bing, S. Lu, L. Lei, H. Tong-Ming, H. Chun-Feng, P. Wei-Ming, J. Xi-Hai, S. Jing, H. Lian, G. Qing, J. Phys. D 46, 145002 (2013)

    Article  Google Scholar 

  18. G. Xuchun, Y. Wei, W. Jinquan, W. Kunlin, L. Ruitao, Z. Hongwei, K. Feiyu, W Jialin, G. Dehai, J. Phys. D 42, 075002 (2009)

    Article  Google Scholar 

  19. H. Xiaogu, Z. Jing, X. Shaorong, C. Guosheng, J. Am. Ceram. Soc. 97, 1363 (2014)

    Article  Google Scholar 

  20. POWDMULT, An Interactive powder diffraction data interpretation and indexing program Version 2.1, E. Wu. (School of Physical Sciences, Flinders University of South Australia, Bradford Park)

  21. D.C.L. Vasconcelos, V.C. Costa, E.H.M. Nunes, A.C.S. Sabioni, M. Gasparon, W.L. Vasconcelos, Mater. Sci. Appl. 2, 1375 (2011)

    Google Scholar 

  22. M. Faraday, Phil. Trans. 128, 265 (1837)

    Article  Google Scholar 

  23. O.F. Mossoti, Mem. di Mathem e.di.fisica in Modena 24, 49 (1850)

    Google Scholar 

  24. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, Asia, 1996), pp. 381–392

  25. C.G. Koop, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  26. R.P. Pawar, V. Puri, Ceram. Int. 40, 10423 (2014)

    Article  Google Scholar 

  27. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    Article  Google Scholar 

  28. S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86, 2215 (1999)

    Article  Google Scholar 

  29. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  30. Z. Yang, L. Fang, L. Liu, C. Hu, X. Chen, H. Zhou, J. Mater. Sci. 23, 229 (2012)

    Google Scholar 

  31. F. Liang, F. Xiang, W. Liao, L. Liu, H. Zhang, X. Kuang, Mater. Chem. Phys. 143, 552 (2014)

    Article  Google Scholar 

  32. Y. Huang, D. Shi, L. Liu, G. Li, S. Zheng, L. Fang, Appl. Phys. A 114, 891 (2014)

    Article  Google Scholar 

  33. T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  34. M. Azizar Rahman, A.K.M. Akther Hossain, Phys. Scr. 89, 115811 (2014)

    Article  Google Scholar 

  35. J. Plocharski, W. Wieczoreck, Solid State Ion. 28, 1014 (1998)

    Google Scholar 

  36. Z. Lu, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ion. 57, 235 (1992)

    Article  Google Scholar 

  37. J.S. Kim, J.N. Kim, Jpn. J. Appl. Phys. 39, 3502 (2000)

    Article  Google Scholar 

  38. A.K. Jonscher, Dielectric Relaxation in solids. (Chelesa Dielectric Press, London, 1983)

    Google Scholar 

  39. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  40. A.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  Google Scholar 

  41. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Phys. Scr. 86, 025705 (2012)

    Article  Google Scholar 

  42. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Mater. Res. Express 3, 065017 (2016)

    Article  Google Scholar 

  43. J.R. Macdonald, Solid State Ion. 13, 147 (1984)

    Article  Google Scholar 

  44. A.R. James, K. Srinivas, Mater. Res. Bull. 34, 1301 (1999)

    Article  Google Scholar 

  45. K. Parida, S.K. Dehury, R.N.P. Choudhary, Phys. Lett. A 380, 4083 (2016)

    Article  Google Scholar 

  46. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Appl. Phys. A 104, 1047 (2011)

    Article  Google Scholar 

  47. S. Pattanayak, R.N.P. Choudhary, Ceram. Int. 41, 9403 (2015)

    Article  Google Scholar 

  48. R. Padhee, R.P Das, B.N. Parida, R.N.P. Choudhary, J. Phys. Chem. Solids 74, 377 (2013)

    Article  Google Scholar 

  49. N. Kumar, S.K. Patri, R.N.P. Choudhary, J. Alloys Compd. 615, 456 (2014)

    Article  Google Scholar 

  50. L. Liu, L. Fang, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, C. Hu, J. Appl. Phys. 110, 094101 (2011)

    Article  Google Scholar 

  51. Y. Huang, L. Liu, D. Shia, S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadid, Ceram. Int. 39, 6063 (2013)

    Article  Google Scholar 

  52. Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, J. Mater. Sci. 24, 1994 (2013)

    Google Scholar 

  53. A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z. Ujma, Solid State Ion 176, 1439 (2005)

    Article  Google Scholar 

  54. Z. Wang, X.M. Chen, L. Ni, X.Q. Liu, Appl. Phys. Lett. 90, 022904 (2007)

    Article  Google Scholar 

  55. T. Acharya, R.N.P. Choudhary, IEEE Trans. Dielectr. Electr. Insul. 22, 6 (2015)

    Article  Google Scholar 

  56. Y.B. Taher, A. Oueslati, K. Khirouni, M. Gargouri, Mater. Res. Bull. 78, 148 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The author’s would like to extend their gratitude and sincere thanks to Prof. B. K. Roul, Insititute of Material Science, Bhubaneswar and Mrs Satyabati Das, Indian Institute of Technology, Bhubaneswar for providing some experimental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhasini Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Padhee, R., Mahapatra, P.K. et al. Structural, dielectric, impedance and modulus spectroscopy of Bi2NdTiVO9 ferroelectric ceramics. J Mater Sci: Mater Electron 28, 17344–17353 (2017). https://doi.org/10.1007/s10854-017-7667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7667-y

Navigation