Skip to main content
Log in

Vibrational studies, dielectric, and electrical conductivity in (Ba0.95Ca0.05)0.1(Ti0.8Sn0.2)0.1Na0.9Nb0.9O3 ferroelectric ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

(Ba0.95Ca0.05)0.1(Ti0.8Sn0.2)0.1Na 0.9Nb0.9O3 (BCNTSNO3) ferroelectric ceramic was synthesized by traditional solid-state method. Room temperature structural analysis, using X-ray diffraction data, confirmed the prepared ceramic purity with the existence of morphotropic phase boundary (MPB) which appears from tetragonal to orthorhombic symmetry with P4mm and Pmm2 space group, respectively. Temperature dependence of the dielectric measurement exhibited a ferroelectric–paraelectric transition at 540 K. Raman spectra were studied in the range of 50–1000 cm−1 as a function of temperature of 293 K–573 K. A detailed analysis of the frequency and half-width versus temperature introduces huge changes which are associated to the ferroelectric transitions originating from the internal vibrational modes of NbO6 octahedron. Electrical conductivity was carried out, using impedance spectroscopy, in the frequency and temperature range, 1 Hz–1 MHz and 500–600 K, respectively. Both impedance and modulus analysis exhibit the contribution of grain and grain boundary to the sample electrical response. To explain the impedance results, an equivalent circuit was proposed. The temperature dependence of the alternating current conductivity (σac) and characteristic relaxation time (τ) confirmed the observed ferroelectric phase transitions in the dielectric study. Moreover, temperature dependence of frequency exponent (s) is investigated to explain the conduction mechanism in the different regions. It was attributed to the correlated barrier-hopping model (CBH) in region (I) and (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Harada, Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67 − xLi3xTiO3 (x = 0.11). Solid State Ion. 121, 245–251 (1999)

    ADS  Google Scholar 

  2. A. Ghamgui, Z. Aydi, L. Sassi, V. Seveyrat, A. Perrin, L. Maalej, H. Lebrun, Khemakhem, Structural, dielectric and impedance spectroscopy studies of (Na0.5Bi0.5)(Zr0.025Ti0.975)O3 ceramic. J. Mater. Sci. Mater. Electron. 28, 17482–17489 (2017)

    Google Scholar 

  3. V.A. Isupov, Ferroelectric Na0.5 Bi0.5 TiO3 and K0.5 Bi0.5 TiO3 Perovskites and Their Solid Solutions. Ferroelectrics. 315, 123–147 (2005)

    Google Scholar 

  4. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Google Scholar 

  5. J. Kulawik, D. Szwagierczak, B. Gröger, Investigations of properties of ceramic materials with perovskite structure in chosen electronic applications, Bull. Pol. Acad. Sci. Tech. Sci. 55, 293–297 (2007)

    Google Scholar 

  6. Y. Yang, Y. Zhou, J. Ren, Q. Zheng, K.H. Lam, D. Lin, Phase coexistence and large piezoelectricity in BaTiO3 -CaSnO3 lead-free ceramics. J. Am. Ceram. Soc. 101, 2594–2605 (2018). https://doi.org/10.1111/jace.15416

    Article  Google Scholar 

  7. R. Bechmann, Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J. Acoust. Soc. Am. 28, 347–350 (1956)

    ADS  Google Scholar 

  8. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693–2700 (2005)

    Google Scholar 

  9. K. Konieczny, Pyroelectric and dielectric study of NaNbO3 single crystals. Mater. Sci. Eng. B 60, 124–127 (1999)

    Google Scholar 

  10. S. Khemakhem, S. Yahyaoui, R.B. Hassen, H. Khemakhem, A.B. Salah, Crystal structure and electrical behavior of the new ceramic Ba0.7Na0.3Ti0.7Nb0.3O3. Solid State Sci. 5, 367–371 (2003)

    ADS  Google Scholar 

  11. H. Ghoudi, S. Chkoundali, A. Aydi, K. Khirouni, Structure and dielectric properties of (Ba0.7Sr0.3)1–x Na x (Ti0.9Sn0.1)1–x Nb x O3 ceramics. Appl. Phys. A. 123, 703–712 (2017)

    ADS  Google Scholar 

  12. B. Malic, D. Jenko, J. Bernard, J. Cilensek, M. Kosec, Synthesis and sintering of (K, Na)NbO3 based ceramics. MRS Proc. 755, 1–6 (2002)

    Google Scholar 

  13. T. Maeda, N. Takiguchi, M. Ishikawa, T. Hemsel, T. Morita, (K, Na)NbO3 lead-free piezoelectric ceramics synthesized from hydrothermal powders. Mater. Lett. 64, 125–128 (2010)

    Google Scholar 

  14. Y.D. Juang, S.B. Dai, Y.C. Wang, J.S. Hwang, M.L. Hu, W.S. Tse, Low temperature phase transition of Li0.12Na0.88NbO3 studied by Raman scattering. J. Appl. Phys. 88, 742–745 (2000)

    ADS  Google Scholar 

  15. H. Khelifi, A. Aydi, N. Abdelmoula, A. Simon, A. Maalej, H. Khemakhem, M. Maglione, Structural and dielectric properties of Na1 − xBaxNb1 − x(Sn0.5Ti0.5)xO3 ceramics. J. Mater. Sci. 47, 1943–1949 (2012)

    ADS  Google Scholar 

  16. H. Aydi, C. Khemakhem, R. Von Boudaya, A. der Mühll, Simon, New ferroelectric and relaxor ceramics in the mixed oxide system NaNbO3–BaSnO3. Solid State Sci. 6, 333–337 (2004)

    ADS  Google Scholar 

  17. H. Aydi, A. Khemakhem, D. Simon, R. von der Michau, Mühll, Study of ceramic materials in the SrSnO3–NaNbO3 system by X-ray diffraction, dielectric and Raman spectroscopy. J. Alloys Compd. 484, 356–359 (2009)

    Google Scholar 

  18. W. Janbua, T. Bongkarn, T. Kolodiazhnyi, N. Vittayakorn, High piezoelectric response and polymorphic phase region in the lead-free piezoelectric BaTiO3–CaTiO3–BaSnO3 ternary system. RSC Adv. 7, 30166–30176 (2017)

    Google Scholar 

  19. L.-F. Zhu, B.-P. Zhang, X.-K. Zhao, L. Zhao, F.-Z. Yao, X. Han, P.-F. Zhou, J.-F. Li, Phase transition and high piezoelectricity in (Ba, Ca)(Ti 1−x Snx)O 3 lead-free ceramics. Appl. Phys. Lett. 103, 072905 (2013)

    ADS  Google Scholar 

  20. S.K. Mohanty, H.S. Mohanty, B. Behera, D.P. Datta, S. Behera, P.R. Das, Influence of NaNbO3 on the structural, optical and dielectric properties of 0.05(K0.5Bi0.5TiO3)–0.95(NaNbO3) composites ceramics. J. Mater. Sci. Mater. Electron. 30, 5833–5844 (2019)

    Google Scholar 

  21. N. Baskaran, H. Chang, Thermo-Raman and dielectric constant studies of CaxBa1 − xTiO3 ceramics. Mater. Chem. Phys. 77, 889–894 (2003)

    Google Scholar 

  22. W. Ncib, A.B.J. Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Investigation of structural, electrical and dielectric properties of sol-gel prepared La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0.0, 0.1) manganites. J. Alloys Compd. 768, 249–262 (2018)

    Google Scholar 

  23. L.B. Abdessalem, S. Aydi, A. Aydi, Z. Sassi, A. Maalej, H. Khemakhem, X-ray diffraction, dielectric, and Raman spectroscopy studies of BaSrTiO3–NaNbO3 ceramic. Appl. Phys. A. 123, 305–311 (2017)

    ADS  Google Scholar 

  24. R.J.C. Lima, P.T.C. Freire, J.M. Sasaki, A.P. Ayala, F.E.A. Melo, J. Mendes Filho, K.C. Serra, S. Lanfredi, M.H. Lente, J.A. Eiras, Temperature-dependent Raman scattering studies in NaNbO3 ceramics. J. Raman Spectrosc. 33, 669–674 (2002)

    ADS  Google Scholar 

  25. M.B. Abdessalem, S. Aydi, A. Aydi, N. Abdelmoula, Z. Sassi, H. Khemakhem, Polymorphic phase transition and morphotropic phase boundary in Ba1 − xCaxTi1 − yZryO3 ceramics. Appl. Phys. A. 123, 583–593 (2017)

    ADS  Google Scholar 

  26. M. Boukriba, F. Sediri, N. Gharbi, Hydrothermal synthesis and electrical properties of NaNbO3. Mater. Res. Bull. 48, 574–580 (2013)

    Google Scholar 

  27. P.S.R. Krishna, S.K. Mishra, A.B. Shinde, S. Kesari, R. Rao, Raman spectroscopy of Lithium modified Sodium Niobate at elevated temperature. Ferroelectrics 510, 34–42 (2017). https://doi.org/10.1080/00150193.2017.1326801

    Article  Google Scholar 

  28. Y.D. Juang, S.B. Dai, Y.C. Wang, W.Y. Chou, J.S. Hwang, M.L. Hu, W.S. Tse, Phase transition of LixNa1ϪxNbO3 studied by Raman scattering method. Solid State Commun. 111, 723–728 (1999)

    ADS  Google Scholar 

  29. H. Khelifi, I. Zouari, A. Al-Hajry, N. Abdelmoula, D. Mezzane, H. Khemakhem, Ac conductivity and ferroelectric phase transition of Bi0.7(Ba0.8Sr0.2)0.3Fe0.7Ti0.3O3 ceramic. Ceram. Int. 41, 12958–12966 (2015)

    Google Scholar 

  30. M. Kuru, T. Şaşmaz Kuru, S. Bağcı, The role of the calcium concentration effect on the structural and dielectric properties of mixed Ni–Zn ferrites, J. Mater. Sci. Mater. Electron. (2019). http://link.springer.com/10.1007/s10854-019-00837-9. Accessed 19 Feb 2019

  31. T. Sahu, B. Behera, Dielectric and electrical study along with the evidences of small polaron tunnelling in Gd doped bismuth ferrite lead titanate composites. J. Mater. Sci.: Mater. Electron. 29, 7412–7424 (2018)

    Google Scholar 

  32. Y.B. Taher, A. Oueslati, M. Gargouri, ac conductivity and NSPT model conduction of KAlP2O7 compound. Ionics. 21, 1321–1332 (2015)

    Google Scholar 

  33. W. Trigui, A. Oueslati, I. Chaabane, G. Corbel, F. Hlel, Electrical properties, equivalent circuit and dielectric relaxation studies of [(C3H7)4 N]3Bi3Cl12 compound. Appl. Phys. A 119, 673–680 (2015)

    ADS  Google Scholar 

  34. R.M. Hill, A.K. Jonscher, The dielectric behaviour of condensed matter and its many-body interpretation. Contemp. Phys. 24, 75–110 (1983)

    ADS  Google Scholar 

  35. M. Oueslati, Gargouri, Studies on structural, electrical, and transport properties of [(C3H7)4 N]2Cu2Br 6 compound. J. Alloys Compd. 739, 1089–1096 (2018)

    Google Scholar 

  36. S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    ADS  Google Scholar 

  37. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012)

    ADS  Google Scholar 

  38. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)

    ADS  Google Scholar 

  39. M. Dult, R.S. Kundu, S. Murugavel, R. Punia, N. Kishore, Conduction mechanism in bismuth silicate glasses containing titanium. Phys. B Condens. Matter. 452, 102–107 (2014)

    ADS  Google Scholar 

  40. A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    ADS  Google Scholar 

  41. A. Gharbi, K. Oueslati, Guidara, alternating current conduction mechanisms of RbMgPO 4 compound. Mater. Res. Bull. 100, 1–6 (2018)

    Google Scholar 

  42. J.H. Ambrus, C.T. Moynihan, P.B. Macedo, Conductivity relaxation in a concentrated aqueous electrolyte solution. J. Phys. Chem. 76, 3287–3295 (1972)

    Google Scholar 

  43. F.B. Bacha, S.M. Borchani, M. Dammak, M. Megdiche, Optical and complex impedance analysis of double tungstates of mono- and trivalent metals for LiGd(WO 4) 2 compound. J. Alloys Compd. 712, 657–665 (2017)

    Google Scholar 

  44. S. Hajlaoui, I. Chaabane, A. Oueslati, K. Guidara, Electrical transport properties and modulus behavior of the organic–inorganic [N(C3H7)4]2SnCl6 compound. Phys. B Condens. Matter. 474, 90–96 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Slimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimi, H., Oueslati, A. & Aydi, A. Vibrational studies, dielectric, and electrical conductivity in (Ba0.95Ca0.05)0.1(Ti0.8Sn0.2)0.1Na0.9Nb0.9O3 ferroelectric ceramic. Appl. Phys. A 125, 510 (2019). https://doi.org/10.1007/s00339-019-2801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2801-8

Navigation