Skip to main content
Log in

Effects of annealing temperature, ambient humidity and temperature on dielectric properties of sol–gel-derived amorphous alumina thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Alumina is the great potential material for the high-energy-storage application. Annealing temperature, ambient humidity and temperature are crucial parameters for further investigations of alumina dielectrics. Highly dense and uniform amorphous alumina thin films were prepared by sol–gel and spin-coating technology. The effects of annealing temperature, relative ambient humidity and temperature on dielectric properties of amorphous alumina thin films were first investigated. The annealing temperature varied from 450 to 700 °C. The ambient humidities of 20, 40, 60 and 80% were chosen. The leakage current density of film annealed at 450 °C showed strong dependence on the ambient humidity. However, the effect of ambient humidity on leakage current density weakened as the annealing temperature rising. At the constant ambient humidity, films annealed at 450 and 500 °C showed lower leakage current densities than films annealed at 600 and 700 °C. The various annealing temperatures made little influence on dielectric loss but can enhance slightly the dielectric constant at 500 °C. The annealing temperature of 500 °C was reasonable and the resulting films exhibited stable conduction mechanism at various ambient temperatures. Moreover, the annealing temperature, ambient humidity and temperature did not make the remarkable influence on the breakdown strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin, A. Matthews, Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surf. Coat. Technol. 149, 245–251 (2002)

    Article  Google Scholar 

  2. A.C.M. Esther, N. Sridhara, S.V. Sebastian et al., Optical and RF transparent protective alumina thin films. J. Mater. Sci. 26, 9707–9716 (2015)

    Google Scholar 

  3. G. Ortega-Cervantez, G. Rueda-Morales, J. Ortiz-Lopez, Cold-wall CVD carbon nanotube synthesis on porous alumina substrates. J. Mater. Sci. 20, 403–407 (2009)

    Google Scholar 

  4. C.L. Huang, J.J. Wang, F.S. Yen, C.Y. Huang, Microwave dielectric properties and sintering behavior of nano-scaled (α+θ)-Al2O3 ceramics. Mater. Res. Bull. 43, 1463–1471 (2008)

    Article  Google Scholar 

  5. B. Soltani, M. Babaeipour, A. Bahari, Studying electrical characteristics of Al2O3/PVP nano-hybrid composites as OFET gate dielectric. J. Mater. Sci. (2016). doi: 10.1007/s10854-016-6064-2

    Google Scholar 

  6. D.D. Marco, K. Drissi, N. Delhote, O. Tantot, P.M. Geffroy, S. Verdeyme, T. Chartier, Dielectric properties of pure alumina from 8 GHz to 73 GHz. J. Eur. Ceram. Soc. 36, 3355–3361 (2016)

    Article  Google Scholar 

  7. N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D 29, 253–258 (1996)

    Article  Google Scholar 

  8. A. Boumaza, L. Favaro, J. Lédion, G. Sattonnay, J.B. Brubach, P. Berthet, A.M. Huntz, P. Roy, R. Tétot, Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J. Solid. State. Chem. 182, 1171–1176 (2009)

    Article  Google Scholar 

  9. Y.W. Li, Q. Qiao, Z. Dong, J.Z. Zhang, Z.G. Hu, J.H. Chu, Enhanced dielectric properties in bismuth-doped alumina films prepared by atomic layer deposition. J. Non-Crysta. Solid. 443, 17–22 (2016)

    Article  Google Scholar 

  10. P.J. Kelly, R.D. Arnell, Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering. J. Vac. Sci. Technol. A 17, 945–953 (1999)

    Article  Google Scholar 

  11. M.S. Al-Robaee, G.N. Subbanna, K.N. Rao, S. Mohan, Studies of the optical and structural properties of ion-assisted deposited Al2O3 thin films. Vacuum 45, 97–102 (1994)

    Article  Google Scholar 

  12. A.K. Dua, V.C. George, R.P. Agarwala, Characterization and microhardness measurement of electron-beam-evaporated alumina coatings. Thin Solid Films 165, 163–172 (1988)

    Article  Google Scholar 

  13. J.B. Kim, D.R. Kwon, K. Chakrabarti, C. Lee, K.Y. Oh, J.H. Lee, Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique. J. Appl. Phys. 92, 6739–6742 (2002)

    Article  Google Scholar 

  14. M.T. Aguilar-Gama, E. Ramírez-Morales, Z. Montiel-González, Structure and refractive index of thin alumina films grown by atomic layer deposition. J. Mater. Sci. 26, 5546–5552 (2015)

    Google Scholar 

  15. A.W. Ott, J.W. Klaus, J.M. Johnson, S.M. George, Al2O3 thin film growth on Si(100) using binary reaction sequence chemistry. Thin Solid Films 292, 135–144 (1997)

    Article  Google Scholar 

  16. M. Yao, P. Zou, Z. Su, J.W. Chen, X. Yao, The influence of Yttrium on leakage current and dielectric properties of amorphous Al2O3 thin film derived from sol-gel. J. Mater. Sci. 27, 7788–7794 (2016)

    Google Scholar 

  17. M Yao, Z Su, P Zou, J.W. Chen, F Li, X. Yao, Dielectric properties under high electric field for silicon doped alumina thin film with glass-like structure derived from sol-gel process. J. Alloy. Compd. 690, 249–255 (2017)

    Article  Google Scholar 

  18. A.A. Hind, V.H. Grassian, FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir 19, 341–347 (2002)

    Google Scholar 

  19. L.A. Phillips, G.B. Raupp, Infrared spectroscopic investigation of gas-solid heterogeneous photocatalytic oxidation of trichloroethylene. J. Mol. Catal. 77, 297–311 (1992)

    Article  Google Scholar 

  20. D.N. Goldstein, J.A. Mccormick, S.M. George, Al2O3 atomic layer deposition with trimethylaluminum and ozone studied by in situ transmission FT-IR spectroscopy and quadrupole mass spectrometry. J. Phys. Chem. C 112, 19530–19539 (2008)

    Article  Google Scholar 

  21. S. Ahmad, A. Ibrahim, R. Alias, S.M. Shapee, Z. Ambak, S.Z. Zakaria, M.R. Yahya, Thermal and electrical characterization of alumina substrate for microelectronic applications. AIP Conf. Proc. 1217, 442–446 (2010)

    Article  Google Scholar 

  22. H. Birey, Dielectric properties of aluminum oxide films. J. Appl. Phys. 45, 2898–2904 (1978)

    Article  Google Scholar 

  23. A. Rose, Space-charge-limited currents in solids. Phys. Rev. 97, 1538–1544 (1955)

    Article  Google Scholar 

  24. Y. Peng, M. Yao, R. Xiao, X. Yao, Electrical properties of sol-gel derived Mg-doped Al2O3 films. J. Mater. Sci. 27, 11495–11501 (2016)

    Google Scholar 

  25. S.K. Sahoo, R.P. Patel, C.A. Wolden, Leakage current mechanisms in high performance alumina-silicone nanolaminate dielectrics. Appl. Phys. Lett. 101(1–4), 142903 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Technology of China through 973-project (Grant No. 2015CB654601) and National Science Foundation of China (Grant No. 51272177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manwen Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Yao, M., Chen, J. et al. Effects of annealing temperature, ambient humidity and temperature on dielectric properties of sol–gel-derived amorphous alumina thin film. J Mater Sci: Mater Electron 28, 12356–12362 (2017). https://doi.org/10.1007/s10854-017-7055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7055-7

Keywords

Navigation