Skip to main content

Advertisement

Log in

Dielectric property and self-repairing capability of silicon and titanium co-doped amorphous alumina thin films prepared by sol–gel technology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, (Al1−0.02−xSi0.02Tix)2Oy (x = 0.2, 0.9 and 2%) thin films were prepared on Pt/Ti/SiO2/Si substrates using sol–gel technique. The dielectric properties of undoped and Si–Ti co-doped Al2O3 thin films were investigated. The leakage current of (Al0.971Si0.02Ti0.009)2Oy thin film is reduced by 2 orders of magnitude compared with Al2O3 film. Meanwhile, the modified sample exhibits the ultrahigh energy density of 14.01 J/cm3 under the breakdown strength of 647 MV/m, which is an enhancement of 11.26 J/cm3 over that of the undoped Al2O3 film. The improvement of dielectric properties is ascribed to the forming of Al–O–Si, Al–O–Ti bonds and the anodic oxidation of Ti3+, which could strengthen the stability of Al2O3 structure and self-repair the defects of the films under applied electric field. Another reason is that cation vacancies generated by Si–Ti co-doping could effectively prevent the formation of oxygen vacancies and decrease the breakdown probability of the films. This work provides a promising route to dielectric thin films materials for electrical energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Liu, F. Li, L. Ma, H. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010)

    Article  CAS  Google Scholar 

  2. Z. Xie, Z. Yue, B. Peng, J. Zhang, C. Zhao, X. Zhang, G. Ruehl, L. Li, Large enhancement of the recoverable energy storage density and piezoelectric response in relaxor-ferroelectric capacitors by utilizing the seeding layers engineering. Appl. Phys. Lett. 106, 202901 (2015)

    Article  Google Scholar 

  3. Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai, H. Wang, Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015)

    Article  CAS  Google Scholar 

  4. H. Zhu, Z. Liu, F. Wang (2017) Improved dielectric properties and energy storage density of poly(vinylidene fluoride-cotrifluoroethylene-co-chlorotrifluoroethylene) composite films with aromatic polythiourea. J. Mater. Sci. https://doi.org/10.1007/s10853-016-0742-6

    Article  Google Scholar 

  5. X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin, C.W. Nan, Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater. 28, 2055–2061 (2016)

    Article  CAS  Google Scholar 

  6. Q.K. Muhammad, M. Waqar, M.A. Rafiq, Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 51, 1–11 (2016). https://doi.org/10.1007/s10853-016-0231-y

    Article  CAS  Google Scholar 

  7. Z. Su, M. Yao, F. Li, Y. Peng, Q. Feng, X. Yao (2017) Microstructural transitions and dielectric properties of boron-doped amorphous alumina thin film. J. Mater. Sci. https://doi.org/10.1007/s10853-017-1127-1

    Article  Google Scholar 

  8. M. Yao, Z. Su, P. Zou, J. Chen, F. Li, Q. Feng, X. Yao, Dielectric properties under high electric field for silicon doped alumina thin film with glass-like structure derived from sol-gel process. J. Alloys Compd. 690, 249–255 (2017)

    Article  CAS  Google Scholar 

  9. A.B. Khatibani, S.M. Rozati, Growth and molarity effects on properties of alumina thin films obtained by spray pyrolysis. Mater. Sci. Semicond. Process. 18, 80–87 (2014)

    Article  Google Scholar 

  10. P. Katiyar, C. Jin, R.J. Narayan, Electrical properties of amorphous aluminum oxide thin films. Acta Mater. 53, 2617–2622 (2005)

    Article  CAS  Google Scholar 

  11. Z. Pan, J. Zhai, B. Shen, Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A 5, 15217–15226 (2017)

    Article  CAS  Google Scholar 

  12. M. Yao, Y. Peng, R. Xiao, Q. Li, X. Yao, Enhanced self-repairing capability of sol-gel derived SrTiO3/nano Al2O3 composite films. Appl. Phys. Lett. 109, 092904 (2016)

    Article  Google Scholar 

  13. Y. Peng, M. Yao, R. Xiao, X. Yao, Electrical properties of sol-gel derived Mg-doped Al2O3 films. J. Mater. Sci. Mater. Electron. 27, 11495–11501 (2016)

    Article  CAS  Google Scholar 

  14. M. Yao, R. Xiao, Y. Peng, J. Chen, B. Hu, X. Yao, The influence of titanium doping on the electric properties of amorphous alumina films prepared by sol-gel technology. J. Sol-Gel. Sci. Technol. 74, 39–44 (2015)

    Article  CAS  Google Scholar 

  15. M. Yao, P. Zou, Z. Su, J. Chen, X. Yao, The influence of yttrium on leakage current and dielectric properties of amorphous Al2O3 thin film derived by sol-gel. J Mater Sci Mater Electron 27, 7788–7794 (2016)

    Article  CAS  Google Scholar 

  16. P.K. Sharma, M.H. Jilavi, D. Burgard, R. Nass, H. Schmidt, Hydrothermal synthesis of nanosize α-Al2O3 from seeded aluminum hydroxide. J. Am. Ceram. Soc. 81, 2732–2734 (1998)

    Article  CAS  Google Scholar 

  17. V.A. Zeitler, C.A. Brown, The infrared spectra of some Ti-O-Si, Ti-O-Ti and Si-O-Si compounds. J. Phys. Chem. C 61, 1174–1177 (1957)

    Article  CAS  Google Scholar 

  18. L. Stoch, M. Środa, Infrared spectroscopy in the investigation of oxide glasses structure. J. Mol. Struct. 511–512, 77–84 (1999)

    Article  Google Scholar 

  19. T.M.H. Costa, M.R. Gallas, E.V. Benvenutti, J.A.H. Jornada, Study of nanocrystalline γ-Al2O3 produced by high-pressure compaction. J. Phys. Chem. B 103, 4278–4284 (1999)

    Article  CAS  Google Scholar 

  20. NIST X-ray photoelectron spectroscopy database (2012), http://srdata.nist.gov/xps/

  21. S. Seal, A. Kale, K.B. Sundaram, D. Jimenez, Oxidation and chemical state analysis of polycrystalline magnetron sputtered (Ti, Al)N films at ambient and liquid N2 temperatures. J. Vac. Sci. Technol. A 18, 1571 (2000)

    Article  CAS  Google Scholar 

  22. F.H. ElBatal, M.A. Marzouk, H.A. ElBatal, Optical and crystallization studies of titanium dioxide doped sodium and potassium silicate glasses. J. Mol. Struct. 1121, 54–59 (2016)

    Article  CAS  Google Scholar 

  23. M. Yao, J. Chen, Z. Su, Y. Peng, P. Zou, X. Yao, Anodic oxidation in aluminum electrode by using hydrated amorphous aluminum oxide film as solid electrolyte under high electric field. ACS Appl. Mater. Interfaces 8, 11100–11107 (2016)

    Article  CAS  Google Scholar 

  24. D. Liu, S.J. Clark, J. Robertson, Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 96, 032905 (2010)

    Article  Google Scholar 

  25. K. Ganesan, S. Ilango, M. Shanmugam, M.F. Baroughi, M. Kamruddin, A.K. Tyagi, Pre- and post-breakdown electrical studies in ultrathin Al2O3 films by conductive atomic force microscopy. Curr. Appl. Phys. 13, 1865–1869 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61761136004) and the Ministry of Science and Technology of China through 973-project (Grant No. 2015CB654601). 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manwen Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Yao, M., Su, Z. et al. Dielectric property and self-repairing capability of silicon and titanium co-doped amorphous alumina thin films prepared by sol–gel technology. J Mater Sci: Mater Electron 29, 16581–16589 (2018). https://doi.org/10.1007/s10854-018-9751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9751-3

Navigation