Skip to main content

Advertisement

Log in

Role of deposition time on synthesis of high-performance NiCo2O4 supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present article, the chemical bath deposition method is used to prepare three dimensional NiCo2O4 thin films and used as an electrode material for supercapacitor application. The effect of reaction time on the supercapacitive performance is studied by varying the reaction time from 2 to 6 h. The 3D NiCo2O4 electrode delivers high specific capacitance of 540 F/g at scan rate of 5 mV/s with better cycling stability by retaining 93.5% initial capacitance after 1000 cycle. Additionally, the 3D NiCo2O4 electrode shows acceptable energy density of 56 Wh/kg at power density of 5.7 kW/kg. These excellent supercapacitive performance indicate the NiCo2O4 nanoflower like structure is a promising electrode material for future energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.J. Patil, V.C. Lokhande, N.R. Chodankar, C.D. Lokhande, Chemically prepared La2Se3 nanocubes thin film for supercapacitor application. J. Colloid Interface Sci. 469, 318–324 (2016)

    Article  Google Scholar 

  2. A.A. Yadav, V.S. Kumbhar, S.J. Patil, et al., Supercapacitive properties of chemically deposited La2O3 thin film. Ceram. Int. 42, 2079–2084 (2016)

    Article  Google Scholar 

  3. X. Liu, J. Liu, X. Sun, NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 3, 13900–13905 (2015)

    Article  Google Scholar 

  4. T. Huang, C. Zhao, R. Zheng et al., Facilely synthesized porous ZnCo2O4 rodlike nanostructure for high-rate supercapacitors. Ionics (Kiel) 21, 3109–3115 (2015)

    Article  Google Scholar 

  5. S.K. Shinde, D.P. Dubal, G.S. Ghodake et al., Nanoflower-like CuO /Cu(OH)2 hybrid thin films†¯: synthesis and electrochemical supercapacitive properties. J. Electroanal. Chem. 732, 80–85 (2014)

    Article  Google Scholar 

  6. S.J. Patil, B.H. Patil, R.N. Bulakhe, C.D. Lokhande, Electrochemical performance of a portable asymmetric supercapacitor device based on cinnamon-like La2Te3 prepared by a chemical synthesis route. RSC Adv. 4, 56332–56341 (2014)

    Article  Google Scholar 

  7. B.S. Singu, U. Male, S.E. Hong, K.R. Yoon, Synthesis and performance of nickel hydroxide nanodiscs for redox supercapacitors. Ionics 22, 1485–1491 (2016)

    Article  Google Scholar 

  8. Y.H. Dai, L.B. Kong, K. Yan et al., Facile fabrication of manganese phosphate nanosheets for supercapacitor applications. Ionics 22, 1461–1469 (2016)

    Article  Google Scholar 

  9. Y. Wu, S. Liu, K. Zhao et al., Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors. Ionics (Kiel), 1–11 (2016). doi:10.1007/s11581-015-1625-6

  10. Y. Zhu, Z. Wu, M. Jing et al., 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochim. Acta 149, 144–151 (2014)

    Article  Google Scholar 

  11. H. Zheng, Y. Ni, F. Wan, X. Ma, Fast synthesis and electrochemical performance of hollow NiCo2O4 flowerlike microstructures. RSC Adv. 5, 31558–31565 (2015)

    Article  Google Scholar 

  12. K. Karthikeyan, D. Kalpana, N.G. Renganathan, Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics (Kiel) 15, 107–110 (2009)

    Article  Google Scholar 

  13. E. Umeshbabu, G. Rajeshkhanna, G.R. Rao, Urchin and sheaf-like NiCo2O4 nanostructures†¯: synthesis and electrochemical energy storage application. Int. J. Hydrog. Energy 39, 15627–15638 (2014)

    Article  Google Scholar 

  14. S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv. 5, 4443–4447 (2014)

    Article  Google Scholar 

  15. C.H. Wu, J.H. Zhu, N. Chen et al., Preparation of stereoscopic snowflake-like CoO material and its supercapacitor applications. Ionics (Kiel) 21, 2303–2307 (2015)

    Article  Google Scholar 

  16. Y. Ma, H. Jiang, Q. Liu et al., Rattle-type NiCo2O4-carbon composite microspheres as electrode materials for high-performance supercapacitors. New J Chem 39, 7495–7502 (2015)

    Article  Google Scholar 

  17. Y. Zhu, X. Pu, W. Song et al., High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J. Alloys Compd. 617, 988–993 (2014)

    Article  Google Scholar 

  18. J. Wu, R. Mi, S. Li et al., Hierarchical three-dimensional NiCo2O4 nanoneedle arrays supported on Ni foam for high-performance supercapacitors. RSC Adv. 5, 25304–25311 (2015)

    Article  Google Scholar 

  19. Y. Sun, X. Xiao, P. Ni et al., DNA-templated synthesis of nickel cobaltite oxide nanoflake for high-performance electrochemical capacitors. Electrochim. Acta 121, 270–277 (2014)

    Article  Google Scholar 

  20. X. Yu, X. Yao, T. Luo et al., Facile Synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl. Mater. Interfaces 6, 3689–3695 (2014)

    Article  Google Scholar 

  21. H. Chen, J. Jiang, L. Zhang et al., Facilely synthesized porousNiCo2O4 flowerlike nanostructure for highe-rate supercapacitors. J. Power Sources 248, 28–36 (2014)

    Article  Google Scholar 

  22. R. Zou, K. Xu, T. Wang et al., Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J. Mater. Chem. A 1, 8560–8566 (2013)

    Article  Google Scholar 

  23. Z. Wang, X. Zhang, Z. Zhang et al., Hybrids of NiCo2O4 nanorods and nanobundles with graphene as promising electrode materials for supercapacitors. J. Colloid Interface Sci. 460, 303–309 (2015)

    Article  Google Scholar 

  24. Y. Tao, L. Ruiyi, L. Zaijun, F. Yinjun, A facile and scalable strategy for synthesis of size-tunable NiCo2O4 with nanocoral-like architecture for high-performance supercapacitors. Electrochim. Acta 134, 384–392 (2014)

    Article  Google Scholar 

  25. R.R. Salunkhe, K. Jang, H. Yu et al., Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J. Alloys Compd. 509, 6677–6682 (2011)

    Article  Google Scholar 

  26. Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Electrochimica Acta Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim. Acta 56, 7517–7522 (2011)

    Article  Google Scholar 

  27. E. Jokar, A.I. Zad, S. Shahrokhian, Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J. Solid State Electrochem. 19, 269–274 (2014)

    Article  Google Scholar 

  28. R.B. Waghmode, A.P. Torane, Hierarchical 3D NiCo2O4 nanoflowers as electrode materials for high performance supercapacitors. J. Mater. Sci. Mater. Electron 27, 6133–6139 (2016)

    Article  Google Scholar 

  29. V.V. Burungale, V.V. Satale, A.M. Teli et al., Surfactant free single step synthesis of TiO2 3-D microflowers by hydrothermal route and its photoelectrochemical characterizations. J. Alloys Compd. 656, 491–499 (2016)

    Article  Google Scholar 

  30. A.P. Torane, C.H. Bhosale, Electrodeposition of As2Se3 thin films. Mater. Res. Bull. 38, 847–855 (2003)

    Article  Google Scholar 

  31. J.H. Zhong, A.L. Wang, G.R. Li et al., Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22, 5656–5665 (2012)

    Article  Google Scholar 

  32. Z. Liu, K. Xiao, Q. Xu et al., Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 3, 4372–4380 (2013)

    Article  Google Scholar 

  33. E. Umeshbabu, G. Rajeshkhanna, P. Justin, G.R. Rao, Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures. Mater. Chem. Phys., 1–10 (2015)

  34. A.N. Naveen, S. Selladurai, Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application. Ionics (Kiel) 22, 1471–1483 (2016)

    Article  Google Scholar 

  35. T. Wang, H. Zhang, H. Luo et al., Controlled synthesis of NiCo2O4 nanowires and nanosheets on reduced graphene oxide nanosheets for supercapacitors. J. Solid State Electrochem. 19, 3309–3317 (2015)

    Article  Google Scholar 

  36. N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, Bendable all-solid-state asymmetric supercapacitors based on MnO2 and Fe2O3 thin films. Energy Technol. 3, 625–631 (2015)

    Article  Google Scholar 

  37. M. Kuang, W. Zhang, X.L. Guo et al., Template-free and large-scale synthesis of hierarchical dandelion-like NiCo2O4 microspheres for high-performance supercapacitors. Ceram. Int. 40, 10005–10011 (2014)

    Article  Google Scholar 

  38. R.R. Salunkhe, K. Jang, S. Lee, H. Ahn, Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Adv. 2, 3190–3193 (2012)

    Article  Google Scholar 

  39. R. Ding, L. Qi, M. Jia, H. Wang, Hydrothermal and soft-templating synthesis of mesoporous NiCo2O4 nanomaterials for high-performance electrochemical capacitors. J. Appl. Electrochem. 43, 903–910 (2013)

    Article  Google Scholar 

  40. R.B. Pujari, V.C. Lokhande, V.S. Kumbhar et al., Hexagonal microrods architectured MoO3 thin film for supercapacitor application. J. Mater. Sci. Mater. Electron 27, 3312–3317 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Physics,Yashvantrao Chavan Institute of Science,Satara for providing laboratory facilities and also thankful to Prin.Dr. K. G. Kanade,Yashvantrao Chavan Institute of Science,Satara for providing financial assistance to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Appasaheb P. Torane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghmode, R.B., Torane, A.P. Role of deposition time on synthesis of high-performance NiCo2O4 supercapacitors. J Mater Sci: Mater Electron 28, 9575–9583 (2017). https://doi.org/10.1007/s10854-017-6705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6705-0

Keywords

Navigation