Skip to main content

Advertisement

Log in

Synthesis and characterization of Ni2P2O7 thin film as a superior electrode material for high performance supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electrochemical performance of the supercapacitors essentially relies on electrode materials. The transition metal phosphates have drawn much attraction as electrode material for energy storage in supercapacitors. Ni2P2O7 (NP) thin film electrodes are synthesized through economic and reproducible chemical bath deposition technique by varying Ni concentration 0.05 M, 0.1 M, and 0.15 M. The X-ray diffraction pattern reveals the formation of monoclinic structured NP thin films with high crystallinity. The microsphere like morphology in which agglomerated microspheres assembled in large number with average particle size decreases with increase of molar concentration is visualized by scanning electron microscopy. The cyclic voltammetry (CV) analysis demonstrates the pseudocapacitive nature in NP thin film electrodes. NP3 electrode exhibits the high specific capacitance of 588 F/g at current density 1 A/g evaluated by galvanostatic charge-discharge (GCD) profile. The cyclic stability test of NP3 enunciates its capacitive retention as 95.50% after 2500 cycles. The results indicate that NP3 is an exemplary supercapacitor candidate and it would lead to productive research in future energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shao Y, El-Kady M, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280

    Article  CAS  PubMed  Google Scholar 

  2. Nikzad L, Alibeigi S, Vaezi MR, Yazdani B, Rahimipour MR (2009) Synthesis of a graphite-polyaniline nanocomposite and evaluation of its electrochemical properties. Chem Eng Technol 32:861–866

    Article  CAS  Google Scholar 

  3. Su H, Zhang H, Liu F, Chun F, Zhang B, Chu X, Huang H, Deng W, Gu B, Zhang H, Zheng X, Zhu M, Yang W (2017) High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem Eng J 322:73–81

    Article  CAS  Google Scholar 

  4. Lv X, Ji S, Linkov V, Wang X, Wang H, Wang R (2021) Three-dimensional N-doped super-hydrophilic carbon electrodes with porosity tailored by Cu2O template-assisted electrochemical oxidation to improve the performance of electrical double-layer capacitors. J Mater Chem A 9:2928–2936

    Article  CAS  Google Scholar 

  5. Chong B, Azman N, Abdah M, Sulaiman Y (2019) Supercapacitive performance of N-doped graphene/Mn3O4/Fe3O4 as an electrode material. Appl Sci 9:1040–1051

    Article  CAS  Google Scholar 

  6. Cherusseri J, Sharma R, Kar K (2016) Helically coiled carbon nanotube electrodes for flexible supercapacitors. Carbon 105:113–125

    Article  CAS  Google Scholar 

  7. Inamdar AI, Kim YS, Pawar SM, Kim Hyunsik Im JH, Kim H (2011) Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J Power Sources 196:2393–2397

    Article  CAS  Google Scholar 

  8. Patil U, Gurav K, Kim J, Lokhande C, Jun S (2014) Bath temperature impact on morphological evolution of Ni(OH)2 thin films and their supercapacitive behavior. Bull Mater Sci 37:27–33

    Article  CAS  Google Scholar 

  9. He Y, Hu F, Liu D, He X, Li Q, Sui Y, Qi J, Wang Y (2023) Cattail spike-like Co(OH)F@Co3O4 nanoarrays for high-performance supercapacitors. J Energy Storage 58:106377

    Article  Google Scholar 

  10. Marje S, Katkar P, Pujari S, Khalate A, Deshmukh R, Patil M (2020) Effect of phosphate (anion) precursor on structural and morphology behavior of nickel phosphate thin films and its supercapacitive performance. Mater Sci Eng B 261:114641

    Article  CAS  Google Scholar 

  11. Liu S, Sankar K, Kundu A, Ma M, Kwon J, Jun S (2017) Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. Appl Mater Interfaces 9:21829–21832

    Article  CAS  Google Scholar 

  12. Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu Y, Gao Y, Zhi C (2015) Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11:518–525

    Article  CAS  Google Scholar 

  13. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107

    Article  CAS  Google Scholar 

  14. Gnanakan S, Rajasekhar M, Subramania A (2009) Synthesis of polythiophene nanoparticles by surfactant - assisted dilute polymerization method for high performance redox supercapacitors. Int J Electrochem Sci 4:1289–1301

    CAS  Google Scholar 

  15. Marje S, Patil V, Parale V, Park H, Shinde P, Gunjakar J, Lokhande C, Patil U (2022) Microsheets like nickel cobalt phosphate thin films as cathode for hybrid asymmetric solid-state supercapacitor: Influence of nickel and cobalt ratio variation. Chem Eng J 429:132184

    Article  CAS  Google Scholar 

  16. Liu S, Kang L, Zhang J, Jun SC, Yamauchi Y (2021) Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors. ACS Energy Lett. 6:4127–4154

    Article  CAS  Google Scholar 

  17. Priyadharshini M, Sandhiya M, Sathish M, Pazhanivel T, Mani G, Alothman A, Alqahtani N (2022) Surfactant-dependant self organisation of nickel pyrophosphate for electrochemical supercapacitors. J Mater Sci Mater Elec 33:9269–9276

    Article  CAS  Google Scholar 

  18. Li CL, Zhang B, Fu ZW (2006) Physical and electrochemical characterization of thin films of iron phosphate and nitrided iron phosphate for all-solid-state batteries. J Electrochem Soc 153:160–165

    Article  Google Scholar 

  19. Liu S, Kang L, Henzie J, Zhang J, Ha J, Amin A, Hossain A, Jun SC, Yamauchi Y (2021) Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano 12:18931–18973

    Article  Google Scholar 

  20. Marje S, Katkar P, Kale B, Lokhande C, Lokhande D, Patil M (2019) Effect of phosphate variation on morphology and electrocatalytic activity (OER) of hydrous nickel pyrophosphate thin films. J Alloys Compd 779:49–58

    Article  CAS  Google Scholar 

  21. Darzi S, Esfidvajani M (2017) Preparation of nanoporous nickel phosphate VSB-5 nanorods carbon paste electrode as glucose non-enzymatic sensor. J Porous Mater 24:85–95

    Article  Google Scholar 

  22. Li B, Gu P, Feng Y, Zhang G, Huang K, Xue H, Pang H (2017) Ultrathin nickel–cobalt phosphate 2d nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater 27:1605784

    Article  Google Scholar 

  23. Li X, Elshahawy A, Guan C, Wang J (2017) Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13:1701530

    Article  Google Scholar 

  24. Vamsi Krishna BN, Khaja Hussain SK, Yu JS (2021) Three-dimensional flower-like nickel doped cobalt phosphate hydrate microarchitectures for asymmetric supercapacitors. J Colloid Interface Sci 592:145–155

    Article  CAS  PubMed  Google Scholar 

  25. Marje S, Katkar P, Pujari S, Khalate A, Lokhande C, Patil M (2020) Regulated micro-leaf like nickel pyrophosphate as a cathode electrode for asymmetric supercapacitor. Synth Met 259:116224

    Article  CAS  Google Scholar 

  26. Wei C, Yang S, Liu W, Hou X, Sun Y, Xiong W, Cheng C, Zhang D (2019) Hierarchically porous bowknot-like sodium doped Ni2P2O7-Co2P2O7 with improved supercapacitor performances. Appl Surf Sci 465:763–771

    Article  CAS  Google Scholar 

  27. Mirghni AA, Oyedotun KO, Mahmoud BA, Bello A, Ray SC, Manyala N (2019) Nickel-cobalt phosphate/graphene foam as enhanced electrode for hybrid supercapacitor. Compos. B. 174:106953

    Article  CAS  Google Scholar 

  28. Priyadharshini M, Pandi K, Chen S, Pazhanivel T, Bharathi G (2018) Fabrication of g-C3N4 nanomesh-anchored amorphous NiCoP2O7: tuned cycling life and the dynamic behavior of a hybrid capacitor. ACS Omega 3:18694–18704

    Article  Google Scholar 

  29. Peng X, Chai H, Cao Y, Wang Y, Dong H, Jia D, Zhou W (2018) Facile synthesis of cost-effective Ni3(PO4)2.8H2O microstructures as a supercapattery electrode material. Mater Today Energy 7:129–135

    Article  Google Scholar 

  30. Saleh A, Amer A, Sayed M, Allam K (2021) A facile electrosynthesis approach of Mn-Ni-Co ternary phosphides as binder-free active electrode materials for high-performance electrochemical supercapacitors. Electrochim Acta 380:138197

    Article  CAS  Google Scholar 

  31. Liu S, Kang L, Zhang J, Jung E, Lee S, Jun SC (2020) Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Mater 32:167–177

    Article  Google Scholar 

  32. He Y, Liu D, Zhao H, Wang J, Sui Y, Qi J, Chen Z, Zhang P, Chen C, Zhuang D (2021) Carbon-coated NiMn layered double hydroxides/Ni3S2 nanocomposite for high performance supercapacitors. J. Energy Storage 41:103003

    Article  Google Scholar 

  33. Kang L, Zhang M, Zhang J, Liu S, Zhang N, Yao W, Ye Y, Luo C, Gong Z, Wang C, Zhou X, Wua X, Jun SC (2020) Correction: Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J. Mater. Chem. A 8:25443–25444

    Article  CAS  Google Scholar 

  34. Padmanathan N, Shao H, Razeeb KM (2018) Multifunctional nickel phosphate nano/micro flakes 3D electrode for electrochemical energy storage, non-enzymatic glucose and sweat pH sensors. Appl Mater Interfaces 10:8599–8610

    Article  CAS  Google Scholar 

  35. Senthilkumar B, Khan Z, Park S, Kim K, Ko H, Kim Y (2015) Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J Mater Chem 3:21553–21561

    Article  CAS  Google Scholar 

  36. Wang Z, Zhu Z, Zhang C, Xu C, Chen C (2017) Facile synthesis of reduced graphene oxide/NiMn2O4 nanorods hybrid materials for high-performance supercapacitors. Electrochim Acta 230:438–444

    Article  CAS  Google Scholar 

  37. Liu CL, Peng HR, Cao LJ, Duan XJ, Zhang YH, Xiao P (2017) Liquid-phase exfoliation of NH4Co0.4Ni0.6PO4.H2O for energy storage device. J Alloys Compd 701:67–74

    Article  CAS  Google Scholar 

  38. Wang D, Xu Y, Sun W, Guo X, Yang L, Wang F, Yang V (2020) Ultrasonic treatment of Co7(PO4)2(HPO4)4 using NMP for supercapacitors and oxygen evolution reaction. Electrochim Acta 337:135827

    Article  CAS  Google Scholar 

  39. Wang CG, Sun PX, Qu GM, Yin JM, Xu XJ (2018) Nickel/cobalt based materials for supercapacitors. Chin Chem Lett 29:1731–1740

    Article  CAS  Google Scholar 

  40. Rajalakshmi R, Remya KP, Viswanathan C, Ponpandian N (2021) Enhanced electrochemical activities of morphologically tuned MnFe2O4 nanoneedles and nanoparticles integrated on reduced graphene oxide for highly efficient supercapacitor electrodes. RSC Nanoscale Adv 3:2887–2901

    Article  CAS  Google Scholar 

  41. Vijaya Sankar K, Kalai Selvan R, Meyrick D (2013) Electrochemical performances of CoFe2O4 nanoparticles and rGO based asymmetric supercapacitor. RSC Adv. 5:99959–99967

    Article  Google Scholar 

  42. Zhang X, Wang J, Sui Y, Wei F, Qi J, Meng Q, He Y, Zhuang D (2020) Hierarchical nickel−cobalt phosphide/phosphate/carbon nanosheets for high-performance supercapacitors. ACS Appl. Nano Mater 3:11945–11954

    Article  CAS  Google Scholar 

  43. He Y, Zhang X, Wang J, Sui Y, Qi J, Chen Z, Zhang P, Chen C, Liu W (2021) Constructing Co(OH)F nanorods@NiCo-LDH nanocages derived from ZIF-67 for high-performance supercapacitors. Adv Mater. Interfaces 8:2100642

    Article  CAS  Google Scholar 

  44. Subramani K, Sathish M (2019) Fabrication of 9.6 V highperformance asymmetric supercapacitors stack based on nickel hexacyanoferrate-derived Ni(OH)2 nanosheets and bioderived activated carbon. Sci Rep 9:1104–1127

    Article  Google Scholar 

  45. Liu MC, Li JJ, Hu YX, Yang QQ, Kang L (2016) Design and fabrication of Ni3P2O8 - Co3P2O8.8H2O as advanced positive electrodes for asymmetric supercapacitors. Electrochim Acta 201:142–150

    Article  CAS  Google Scholar 

  46. Liu D, Li S, He Y, Liu C, Li Q, Sui Y, Qi J, Zhang P, Chen C, Chen Z, Liu S (2022) Co(OH)F@CoP/CC core-shell nanoarrays for high-performance supercapacitors. J. Energy Storage 55:105417

    Article  Google Scholar 

  47. Chodankar N, Dubal D, Patil S, Raju G, Karekar S, Huh Y, Han Y (2019) Ni2P2O7 micro-sheets supported ultra-thin MnO2 nanoflakes: a promising positive electrode for stable solid-state hybrid supercapacitor. Electrochim Acta 319:435–443

    Article  CAS  Google Scholar 

  48. Wei C, Cheng C, Wang S, Xu Y, Wang J, Pang H (2015) Sodium-doped mesoporous Ni2P2O7 hexagonal tablets for high-performance flexible all-solid-state hybrid supercapacitors. Chem Asian J 10:1731–1737

    Article  CAS  PubMed  Google Scholar 

  49. Pramanik M, Salunkhe R, Imura M, Yamauchi Y (2016) Phosphonate-derived nanoporous metal phosphates and their superior energy storage application. Appl Mater Interfaces 8:9790–9797

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nivetha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nivetha, S., Prabahar, S., Karunakaran, R.T. et al. Synthesis and characterization of Ni2P2O7 thin film as a superior electrode material for high performance supercapacitors. Ionics 29, 1209–1219 (2023). https://doi.org/10.1007/s11581-023-04885-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04885-4

Keywords

Navigation