Skip to main content
Log in

Effect of Sr-doping on structure and electrical properties of (Ba1−xSrxTi0.6Zr0.3Mn0.1O3) x = 0.1 and 0.2 synthesized by solid state reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Ba1−xSrxTi0.6Zr0.3Mn0.1O3) x = 0.1 and 0.2 ferroelectric material were synthesized by solid state method. XRD studies confirmed the single phase formation, and the functional group confirmation was done using Fourier transform infrared spectroscopy. Dielectric relaxations were observed at different frequency ranges for different temperatures. Activation energy Ea is calculated using Arrhenius equation from impedance and modulus which corresponds to the existence of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.D. Sangram, K.R. Binod, Magnetic and ferroelectric properties of Zn and Mn co-doped BaTiO3Author SK Das supported financially by CSIR, New Delhi (Grant No. 09/750 (0005)/2009-EMR-I). Chin. Phys. B 24(6), 067702 (2015)

    Article  Google Scholar 

  2. S.K. Das, P.P. Rout, S.K. Pradhan, B.K. Roul, Effect of equiproprotional substitution of Zn and Mn in BaTiO3 ceramic—An index to multiferroic applications. J. Adv. Ceram. 1(3), 241–248 (2012)

    Article  Google Scholar 

  3. Y. Yu, H. Zou, Q. F. Cao, X. S. Wang, Y. X. Li, & X. Yao, Phase transitions and relaxation behaviors in barium strontium titanate ceramics determined by dynamic mechanical and dielectric analysis. Ferroelectrics 487(1), 77–85 (2015)

    Article  Google Scholar 

  4. E. V. Ramana, F. Figueiras, A. Mahajan, D. M. Tobaldi, B. F. Costa, M. P. F. Graça, & M. A. Valente, Effect of Fe-doping on the structure and magnetoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 synthesized by a chemical route. J. Mater. Chem. C 4(5), 1066-1079 (2016)

    Google Scholar 

  5. M. M. Rashad, A. O. Turky, & A. T. Kandil, Optical and electrical properties of Ba1–xSrxTiO3 nanopowders at different Sr2+ ion content. J. Mater. Sci. 24(9), 3284–3291 (2013)

    Google Scholar 

  6. Z. Sun, Y. Pu, Z. Dong, Y. Hu, X. Liu, & P. Wang, The effects of soaking time on the grain growth, dielectric and ferroelectric properties of BaTi0.95 Zr0.05O3 ceramics prepared by microwave sintering. Vacuum 101, 228–232 (2014)

    Article  Google Scholar 

  7. J. Wang, G. Rong, T. Wang, & H. Yao, Impact of Sr on the performance of BaTi0.9Zr0.1O3–BaTiO3 dielectric powders. Mod. Phys. Lett. B 28(14), 1450114 (2014)

    Article  Google Scholar 

  8. H. Sun, S. Duan, X. Liu, D. Wang, & H. Sui, Lead-free Ba0.98Ca0.02Zr0.02Ti0.98O3 ceramics with enhanced electrical performance by modifying MnO2 doping content and sintering temperature. J. Alloys Compd. 670, 262–267 (2016)

    Article  Google Scholar 

  9. Meng Jiang, Qin Lin, Dunmin Lin, Qiaoji Zheng, Ximing Fan, Xiaochun Wu, Hailing Sun, Yang Wan, Lang Wu, Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. J. Mater. Sci. 48(3), 1035–1041 (2013)

    Article  Google Scholar 

  10. S. Fuentes, E. Chávez, L. Padilla-Campos, D.E. Diaz-Droguett, Influence of reactant type on the Sr incorporation grade and structural characteristics of Ba1–xSrxTiO3 (x = 0–1) grown by sol–gel-hydrothermal synthesis. Ceram. Int. 39(8), 8823–8831 (2013)

    Article  Google Scholar 

  11. V.V. Shvartsman, J. Zhai, W. Kleemann, The dielectric relaxation in solid solutions BaTi1–xZrxO3. Ferroelectrics 379(1), 77–85 (2009)

    Article  Google Scholar 

  12. W. Chen, X. Zhao, J. Sun, L. Zhang, L. Zhong, Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J. Alloys Compd. 670, 48–54 (2016)

    Article  Google Scholar 

  13. Larson, A. C, & Von Dreele, R. B., Gsas. General Structure Analysis System. LANSCE, MS-H805, (Los Alamos, New Mexico, 1994)

    Google Scholar 

  14. Vuttivong, S., Niemcharoen, S., Seeharaj, P., Vittayakorn, W. C., & Vittayakorn, N. (2013). Sonochemical synthesis of spherical BaTiO3 nanoparticles. Ferroelectrics, 457(1), 44–52.

    Article  Google Scholar 

  15. R.S. Devan, Y.D. Kolekar, B.K. Chougule, Magnetoelectric effect and electrical properties in BTO + Ni0.93Co0.02Cu0.05Fe2O4 particulate composites. J. Alloys Compd. 461(1), 678–683 (2008)

    Article  Google Scholar 

  16. N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels. RSC Adv. 5(47), 37925–37934 (2015)

    Article  Google Scholar 

  17. A. Hussain, J.S. Lee, C.W. Ahn, J.S. Kim, A. Ullah, I.W. Kim, Impedance spectroscopy of lead-free B0.5(Na0.78K0.22)0.5TiO3-(Na0.5K0.5)NbO3 piezoelectric ceramics. J. Kor. Phys. Soc. 57, 1106–1110 (2010)

    Article  Google Scholar 

  18. L. Singh, U.S. Rai, K. Mandal, B.C. Sin, S.I. Lee, Y. Lee, Dielectric, AC-impedance, modulus studies on 0.5 BaTiO3·0.5 CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycine-assisted nitrate-gel route. Ceram. Int. 40(7), 10073–10083 (2014)

    Article  Google Scholar 

  19. K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies on [Bi0.5(Na1–xKx)0.5]0.94 Ba0.06TiO3,(0.16 ≤ x ≤ 0.20) lead-free ceramics. Am. J. Mater. Sci. 6(1), 1–18 (2016)

    Google Scholar 

  20. M.N.V. Ramesh, K.V. Ramesh, Dielectric and impedance spectroscopic studies of 0.8BaTiO3–0.2Bi0.5K0.5TiO3 lead-free ceramics. Int. J. Modern Phys. B 29(18), 1550119 (2015)

    Article  Google Scholar 

  21. G. Murugesan, R. Nithya, S. Kalainathan, S. Hussain, High temperature dielectric relaxation anomalies in Ca0.9Nd0.1Ti0.9Al0.1O3–δ single crystals. RSC Adv. 5(96), 78414–78421 (2015)

    Article  Google Scholar 

  22. L. N. Liu, C. C. Wang, C. M. Lei, T. Li, G. J. Wang, X. H. Sun, & H. Wang, (2013). Relaxor-and phase-transition-like behaviors in ZnO single crystals at high temperatures. App. Phys. Lett. 102(11), 112907.

    Article  Google Scholar 

  23. P.R. Mandal, T.K. Nath, Oxygen-vacancy and charge hopping related dielectric relaxation and conduction process in orthorhombic Gd doped YFe0.6Mn0.4 O3 multiferroics. J. Alloys Compd. 628, 379–389 (2015)

    Article  Google Scholar 

  24. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J. Adv.Ceram. 2(3), 291–300 (2013)

    Article  Google Scholar 

  25. V. Thakur, A. Singh, A.M. Awasthi, L. Singh, Temperature dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses. AIP Adv. 5(8), 087110 (2015)

    Article  Google Scholar 

  26. A.K. Roy, K. Prasad, A. Prasad, Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. Process. Appl. Ceram. 7(2), 81–91 (2013)

    Article  Google Scholar 

  27. G. Alvarez, A. Conde-Gallardo, H. Montiel, and R. Zamorano, About room temperature ferromagnetic behavior in BaTiO3 perovskite. J. Magn. Magn. Mater. 401, 196–199 (2016)

    Article  Google Scholar 

  28. Yao Shuai, Shengqiang Zhou, Danilo Bürger, Helfried Reuther, Ilona Skorupa, Varun John, Manfred Helm, Heidemarie Schmidt, Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. J. Appl. Phys. 109(8), 084105 (2011)

    Article  Google Scholar 

  29. K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies on [Bi0.5(Na1–xKx)0.5]0.94Ba0.06TiO3,(0.16 ≤ x ≤ 0.20) lead-free ceramics. Am. J. Mater. Sci. 6(1), 1–18 (2016)

    Google Scholar 

  30. R. Selvapriya, & M. Alagar, Preparation and structural, morphological and electrochemical characteristics of spinel FeCo2O4 nanostructures with enhanced super capacitance activity.

  31. S.R. Hasan, U. Prasad, N. Kumar, R. Ranjan, R.N.P. Choudhary, Structural, microstructural, dielectric and transport properties of barium bismuth niobate. Eur. J. Adv. Eng. Technol. 2(3), 34–37 (2015)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to VIT University for providing major financial support and excellent research facilities. The authors also thank Prof. S. Kalainathan, VIT University for providing the facilities to carry out dielectric studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ruban Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandan, K.R., Kumar, A.R. Effect of Sr-doping on structure and electrical properties of (Ba1−xSrxTi0.6Zr0.3Mn0.1O3) x = 0.1 and 0.2 synthesized by solid state reaction. J Mater Sci: Mater Electron 28, 7221–7230 (2017). https://doi.org/10.1007/s10854-017-6403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6403-y

Keywords

Navigation