Skip to main content
Log in

Structure and electrical properties of MnO doped (Ba0.96Ca0.04)(Ti0.92Sn0.08)O3 lead free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, (Ba0.96Ca0.04)(Ti0.92Sn0.08)O3xmol MnO (BCTS–xMn) lead-free piezoelectric ceramics were fabricated by the conventional solid-state technique. The composition dependence (0 ≤ x ≤ 3.0 %) of the microstructure, phase structure, and electrical properties was systematically investigated. An O–T phase structure was obtained in all ceramics, and the sintering behavior of the BCTS ceramics was gradually improved by doping MnO content. In addition, the relationship between poling temperature and piezoelectric activity was discussed. The ceramics with x = 1.5 % sintering at temperature of 1330 °C demonstrated an optimum electrical behavior: d 33 ~ 475 pC/N, k p ~ 50 %, ε r ~ 4060, tanδ ~ 0.4 %, P r ~ 10.3 μC/cm2, E c ~ 1.35 kV/mm, T C ~ 82 °C, strain ~0.114 % and \(d_{33}^{*}\) ~ 525 pm/V. As a result, we achieved a preferable electric performance in BaTiO3-based ceramics with lower sintering temperature, suggesting that the BCTS–xMn material system is a promising candidate for lead-free piezoelectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971)

    Google Scholar 

  2. J. RÖdel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  3. W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  4. B. Wu, C. Han, D. Xiao et al., Investigation of a new lead-free (0.89 − x)(Bi0.5 Na0.5)TiO3–0.11(Bi0.5K0.5)TiO3xBa0.85Ca0.15Ti0.90Zr0.10O3 ceramics. Mater. Res. Bull. 47(11), 3937–3940 (2012)

    Article  Google Scholar 

  5. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)

    Article  Google Scholar 

  6. J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J. Mater. Sci. Mater. Electron. 26(12), 9297–9308 (2015)

    Article  Google Scholar 

  7. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K, Na)NbO3-Based Lead-Free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96(12), 3677–3696 (2013)

    Article  Google Scholar 

  8. B. Wu, D. Xiao, J. Wu et al., Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3x wt% ZnO lead-free piezoelectric ceramics sintered at lower temperature. J. Mater. Sci. Mater. Electron. 26(4), 2323–2328 (2015)

    Article  Google Scholar 

  9. B. Wu, D. Xiao, J. Wu et al., Microstructures and piezoelectric properties of CuO-doped (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3 ceramics. J. Electroceram. 33(1–2), 117–120 (2014)

    Article  Google Scholar 

  10. B. Wu, D. Xiao, J. Wu et al., Effect of sintering parameters on microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3 lead-free piezo-ceramics. Ferroelectrics 489(1), 129–134 (2015)

    Article  Google Scholar 

  11. B. Wu, D. Xiao, J. Wu et al., Modification of both d 33 and T C in a potassium–sodium niobate ternary system. Dalton Trans. 44(48), 21141 (2015)

    Article  Google Scholar 

  12. Y. Saito, H. Takao, T. Tani, T. Nonoyama et al., Lead-free piezoceramics. Nature 432, 84 (2004)

    Article  Google Scholar 

  13. R. Bechmann, Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J. Acoust. Soc. Am. 28, 347 (1956)

    Article  Google Scholar 

  14. J. Wu, D. Xiao, B. Wu, W. Wu et al., Sintering temperature-induced elecrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 lead-free ceramics. Mater. Res. Bull. 47, 1281 (2012)

    Article  Google Scholar 

  15. D. Liang, X. Zhu, Y. Zhang et al., Large piezoelectric effect in (1 − x)Ba(Zr0.15Ti0.85)O3x(Ba0.8Sr0.2)TiO3 lead-free ceramics. Ceram. Int. 41(6), 8261–8266 (2015)

    Article  Google Scholar 

  16. D. Xue, Y. Zhou, H. Bao et al., Large piezoelectric effect in Pb-free Ba (Ti, Sn) O3x(Ba, Ca) TiO3 ceramics. Appl. Phys. Lett. 99(12), 122901 (2011)

    Article  Google Scholar 

  17. M. Chen, Z. Xu, R. Chu et al., Polymorphic phase transition and enhanced piezoelectric properties in (Ba0.9Ca0.1)(Ti1−x Sn x )O3 lead-free ceramics. Mater. Lett. 97, 86–89 (2013)

    Article  Google Scholar 

  18. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, High piezoelectric d 33 coefficient in (Ba1−x Ca x )(Ti0.98Zr0.02)O3 lead-free ceramics with relative high Curie temperature. Mater. Lett. 64, 2325 (2010)

    Article  Google Scholar 

  19. S.W. Zhang, H.L. Zhang, B.P. Zhang, S. Yang, Phase-transition behavior and piezoelectric properties of lead-free (Ba0.95Ca0.05)(Ti1−x Zr x )O3 ceramics. J. Alloys Compd. 506, 131 (2010)

    Article  Google Scholar 

  20. P. Wang, Y. Li, Y. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti 0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J. Eur. Ceram. Soc. 31, 2005 (2011)

    Article  Google Scholar 

  21. J. Wu, D. Xiao, W. Wu et al., Effect of dwell time during sintering on piezoelectric properties of Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics. J. Alloys Compd. 509, L359 (2011)

    Article  Google Scholar 

  22. S. Su, R.Z. Zuo, S.B. Lu, Z.K. Xu et al., Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients. Curr. Appl. Phys. 11, 120 (2011)

    Article  Google Scholar 

  23. C. Zhao, W. Wu, H. Wang et al., Site engineering and polarization characteristics in (Ba1−y Ca y )(Ti1−x Hf x ) O3 lead-free ceramics. J. Appl. Phys. 119(2), 024108 (2016)

    Article  Google Scholar 

  24. Y. Yu, J. Wu, T.L. Zhao, S.X. Dong et al., MnO2 doped PSN–PZN–PZT piezoelectric ceramics for resonant actuator application. J. Alloys Compd. 615, 676 (2014)

    Article  Google Scholar 

  25. T.H. Lee, S.G. Lee, J.H. Yeo, D.Y. Kim, Piezoelectric properties of (Na0.465K0.465Bi0.07)(Nb0.93Ti0.07)O3 ceramics with MnO2 addition. J. Electroceram. 30, 213 (2013)

    Article  Google Scholar 

  26. Y. Li, D.W. Wang, W.Q. Cao, B. Li, J. Yuan, D.Q. Zhang, S.J. Zhang, M.S. Cao, Effect of MnO2 addition on relaxor behavior and electrical properties of PMNST ferroelectric ceramics. Ceram. Int. 41, 9647 (2015)

    Article  Google Scholar 

  27. Y.C. Guo, H.Q. Fan, C.B. Long, J. Shi, L. Yang, S.H. Lei, Electromechanical and electrical properties of Bi0.5Na0.5Ti1−x Mn x O3−δ ceramics with high remnant polarization. J. Alloys Compd. 610, 189 (2014)

    Article  Google Scholar 

  28. M. Jiang, Q. Lin, D. Lin et al., Effects of MnO and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. J. Mater. Sci. 48(3), 2013 (1035)

    Google Scholar 

  29. C. Han, J. Wu, C. Pu et al., High piezoelectric coefficient of Pr2O3-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics. Ceram. Int. 38(8), 6359–6636 (2012)

    Article  Google Scholar 

  30. G.R. Li, L.Y. Zheng, Q.R. Yin, B. Jiang, W.W. Cao, Microstructure and ferroelectric properties of MnO2-doped bismuth-layer (Ca, Sr)Bi4Ti4O15 ceramics. J. Appl. Phys. 98, 064108 (2005)

    Article  Google Scholar 

  31. E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov et al., Broadband dielectric response and grain-size effect in K0.5Na0.5NbO3 ceramics. J. Appl. Phys. 107, 014111 (2010)

    Article  Google Scholar 

  32. Y. Park, W.J. Lee, H.G. Kim, Particle-size-induced diffuse phase transition in the fine-particle barium titanate porcelains. J. Phys. Condens. Matter 9, 9445 (1997)

    Article  Google Scholar 

  33. S. Chattopadhyay, P. Ayyub, V.R. Palkar, M. Multani, Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3. Phys. Rev. B 52, 13177 (1995)

    Article  Google Scholar 

  34. C.S. Yu, H.L. Hsieh, Piezoelectric properties of Pb(Ni1/3, Sb2/3)O3–PbTiO3–PbZrO3 ceramics modified with MnO2 additive. J. Eur. Ceram. Soc. 25, 2425 (2005)

    Article  Google Scholar 

  35. S.M. Li, S.H. Lee, C.B. Yoon, H.E. Kim, K.W. Lee, Low-temperature sintering of MnO2-doped PZT–PZN Piezoelectric ceramics. J. Electroceram. 18, 311 (2007)

    Article  Google Scholar 

  36. T. Chen, T. Zhang, G.C. Wang, J.F. Zhou, J.W. Zhang, Y.H. Liu, Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics. J. Mater. Sci. 47, 4612 (2012)

    Article  Google Scholar 

  37. M. Jiang, X. Li, J. Zhu, X. Zhu, W. Shi, L. Li, D. Xiao, J. Zhu, Double hysteresis loops induced by Mn doping in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics. Curr. Appl. Phys. 10, 526–530 (2010)

    Article  Google Scholar 

  38. S. Wongsaenmai, K. Kanchiang, S. Chandarak et al., Crystal structure and ferroelectric properties of Mn-doped ((Ka0.5Na0.5)0.935Li0.065)NbO3 lead-free ceramics. Curr. Appl. Phys. 12(2), 418 (2012)

    Article  Google Scholar 

  39. X. Ren, Large electric-field-induced strain in ferroelectric crystals by reversible domain switching. Nat. Mater. 3, 91–94 (2004)

    Article  Google Scholar 

  40. X.L. Huang, D.Q. Xiao, X.H. Li, W.J. Wu, W.F. Liang et al., Effects of CuO on the electrical properties of CaTiO3-modified [(Na0.52K0.48)0.955Li0.045](Nb0.955Sb0.045)O3 lead-free piezoceramics. J. Am. Ceram. Soc. 93, 2563–2566 (2010)

    Article  Google Scholar 

  41. Z. Feng, X. Ren, Aging effect and large recoverable electrostrain in Mn-doped KNbO3-based ferroelectrics. Appl. Phys. Lett. 91, 032904 (2007)

    Article  Google Scholar 

  42. L.X. Zhang, X. Ren, Aging behavior in single-domain Mn-doped BaTiO3 crystals: implicationfor a unified microscopic explanation of ferroelectric aging. Phys. Rev. B 73, 094121 (2006)

    Article  Google Scholar 

  43. B. Zhang, J. Wu, B. Wu et al., Effects of sintering temperature and poling conditions on the electrical properties of Bi0.50(Na0.70K0.20Li0.10)0.50TiO3 piezoelectric ceramics. J. Alloys Compd. 525, 53–57 (2012)

    Article  Google Scholar 

  44. J. Wu, D. Xiao, B. Wu et al., Sintering temperature-induced electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 lead-free ceramics. Mater. Res. Bull. 47(5), 1281–1284 (2012)

    Article  Google Scholar 

  45. B.K. Lee, S.Y. Chung, S.J. Kang, Grain boundary faceting and abnormal grain growth in BaTiO3. Acta Mater. 48(7), 1575–1580 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Project (Grant Nos. KYTZ201312 and J201220) Supported by the Scientific Research Foundation of CUIT, the Fundamental Research Funds for the Central Universities of Southwest University for Nationalities (No. 2014NZYQN11), The Foundation of Sichuan province science and technology support program, China (Grant No. GZ0198) and Scientific Research Project of Sichuan Provincial Department of Education (Grant No.16ZA0216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Ma, J., Wu, W. et al. Structure and electrical properties of MnO doped (Ba0.96Ca0.04)(Ti0.92Sn0.08)O3 lead free ceramics. J Mater Sci: Mater Electron 28, 2358–2365 (2017). https://doi.org/10.1007/s10854-016-5804-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5804-7

Keywords

Navigation