Skip to main content
Log in

High amplitude vibration of piezoelectric bending actuators

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The properties of several configurations of piezoelectric bending actuators were investigated at high vibration amplitude both theoretically and experimentally. It was found that under high amplitude vibration conditions, the failure of the actuator was mainly caused by the maximum stress and domain reorientation. The actuator tends to fracture or crack at the location of maximum stress, which is indicated by the sudden drop of the displacement during frequency scan. The dimension, boundary condition and vibration order influence the distribution and magnitude of the stress. Domain reorientation may also occur during the frequency scan, which results in the distortion of the current profile. And meanwhile the magnitude of the current, admittance and temperature of the actuator will increase significantly and abruptly. The temperature was found to be increase with the increase of frequency, electric field or vibration amplitude due to the higher mechanical and electrical losses. The un-even stress distribution has also resulted in a high-to-low gradient temperature rise from the clamped end to the free end of the actuator under the Clamped-Free boundary condition. A linear model based on Euler–Benoulli theory has been derived and it provides reasonable explanations on the phenomena observed experimentally in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Niezrechi, D. Brei, A. Moskalik, Shock Vibr. Dig. 33, 269 (2001)

    Article  Google Scholar 

  2. G.H. Haertling, J. Am. Cram. Soc. 82, 797 (1999)

    Article  CAS  Google Scholar 

  3. A.J. Moulson, J.M. Herbert, Electroceramics. (Wiley, England, 2003), Chapter 2 & 6

    Google Scholar 

  4. J.G. Smits, S.I. Dalke, T.K. Cooney, Sens. Actuators 28, 41 (1991)

    Article  Google Scholar 

  5. M. Besell, S. Johansson, Journal of Electroceramics 3, 73 (1999)

    Article  Google Scholar 

  6. J.H. Yoo, J.I. Hong, W. Cao, Sens. Actuators 79, 8 (2000)

    Article  Google Scholar 

  7. Y.H. Chen, T. Li, J. Ma, in Proceedings of the International Conference on Smart Materials-Smart/Intelligent Materials and Nanotechnology (Chiang Mai University, Thailand, 2004), p. 70

  8. T. Li, Y.H. Chen, J. Ma, J. Mater. Sci. 40, 3601 (2005)

    Article  CAS  Google Scholar 

  9. T. Kanda, Y. Kobayashi, T. Higuchi, Jpn. J. Appl. Phys. 42, 3014 (2003)

    Article  CAS  Google Scholar 

  10. M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 38, 5581 (1999)

    Article  CAS  Google Scholar 

  11. S. Tashiro, M. Ikehiro, H. Igarashi, Jpn. J. Appl. Phys. 36, 3004 (1997)

    Article  CAS  Google Scholar 

  12. W.P. Chen, C.P. Chong, P.C.K. Liu, Mat. Sci., Eng. B99, 203 (2003)

    CAS  Google Scholar 

  13. C.H. Xu, J.H. Hu, H.L.W. Chan, Ultrasonics 39, 735 (2002)

    Article  CAS  Google Scholar 

  14. J.M. Calderon-Moreno, M. Popa, Mat. Sci. Eng. A336, 124 (2002)

    CAS  Google Scholar 

  15. T. Fett, D. Munz, G. Thun, J. Mater. Sci. Lett. 19, 1921 (2000)

    Article  CAS  Google Scholar 

  16. K. Uchino, J.H. Zheng, J.W.C. DE Vries, Journal of Electroceramics 2, 33–40 (1998)

    Article  CAS  Google Scholar 

  17. S. Takahashi, Y. Sasaki, K. Uchino, Jpn. J. Appl. Phys. 34, 5328 (1995)

    Article  CAS  Google Scholar 

  18. K. Uchino, S. Hirose, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 307 (2001)

    Article  CAS  Google Scholar 

  19. S. Takahashi, S. Hirose, K. Uchino, J. Am. Ceram. Soc. 77, 2429 (1994)

    Article  Google Scholar 

  20. Q.M. Wang, Q.M. Zhang, L.E. Cross, J. Appl. Phys. 86, 3352 (1999)

    Article  CAS  Google Scholar 

  21. Y. Sasaki, M. Umeda, M. Yamamoto, Jpn. J. Appl. Phys. 40, 5743 (2001)

    Article  CAS  Google Scholar 

  22. C.W. de Silva, Vibration: Fundamentals and Practice. (CRC, Boca Raton, 1999), p. 352

    Google Scholar 

  23. P. Lu, K.H. Lee, J. Sound Vib. 266, 723 (2003)

    Article  Google Scholar 

  24. S. Sherrit, X. Bao, Y. Bar-Cohen, in Proceedings of the IEEE Ultrasonics Symposium. (Institute of Electrical and Electronics Engineers Inc., Atlanta, 2001), P. 1097

  25. J. Hu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 594 (2003)

    Article  Google Scholar 

  26. J. Zheng, S. Takahashi, K. Uchino, J. Am. Ceram. Soc. 79, 3193 (1996)

    Article  CAS  Google Scholar 

  27. K. Yao, K. Uchino, L.C. Lim, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47,819 (2000)

    Article  CAS  Google Scholar 

  28. P. Kielczynski, W. Pajewski, Sens. Actuators 36, 97 (1993)

    Article  Google Scholar 

  29. P. Gerthsen, K.H. Hardtl, N. A. Schmidt, J. Appl. Phys. 51, 1131 (1980)

    Article  CAS  Google Scholar 

  30. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Chen, Y.H., Boey, F.Y.C. et al. High amplitude vibration of piezoelectric bending actuators. J Electroceram 18, 231–242 (2007). https://doi.org/10.1007/s10832-007-9039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9039-0

Keywords

Navigation