Skip to main content
Log in

Effect of Bi and Li co-substituted SrTiO3 ceramics on structural and dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline Sr(1–x)(Bi, Li)xTiO3 ceramics (x = 0 and 0.02) are prepared by a microwave processing method. The effect of co-substitution on structural, dielectric properties and ac-conductivity were investigated. The XRD of ceramics shows single phase with cubic structure. The lattice parameter of the compounds is estimated from the XRD patterns which confirm the incorporation of Bi and Li in SrTiO3 ceramics. Studies revealed that the dielectric constant and dielectric loss increased with an increase of temperature and decreased with an increase in frequency. The maximum dielectric constant obtained at room temperature is around 570 and increased to around 104 at 600 °C measured at 1 kHz frequency whereas the maximum dielectric loss measured was 0.048 at 600 °C and the loss measured at room temperature is 0.02. The activation energy of the samples were investigated using Arrhenius plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Fuchs, C.W. Schneider, R. Schneider, H. Rietschel, J. Appl. Phys. 85, 7362 (1999)

    Article  Google Scholar 

  2. Y. Hu, O.K. Tan, W. Cao, W. Zhu, Ceram. Int. 30, 1819 (2004)

    Article  Google Scholar 

  3. W. Chang, S.W. Kirchoefer, J.M. Pond, J.A. Bellotti, S.B. Qadri, J. Appl. Phys. 96, 6629 (2004)

    Article  Google Scholar 

  4. F.W. Lytle, J. Appl. Phys. 35, 2212–2215 (1964)

    Article  Google Scholar 

  5. K. Chandra Babu Naidu, T. Sofi Sarmash, V. Narasimha Reddy, M. Maddaiah, P. Sreenivasula Reddy, T. Subbarao, J. Austral. Ceram. Soc. 51, 94–102 (2015)

    Google Scholar 

  6. A. Tkach, P.M. Vilarinho, A.L. Kholkin, Acta Mater. 54, 5385–5391 (2006)

    Article  Google Scholar 

  7. A. Tkach, P.M. Vilarinho, A.L. Kholkin, J. Appl. Phys. 101, 084110 (2007)

    Article  Google Scholar 

  8. T. Wu, Y. Pu, P. Gao, D. Liu, Mater. Electron. 24, 4105–4112 (2013)

    Article  Google Scholar 

  9. Y. Zhi, A. Chen, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, J. Eur. Ceram. Soc. 18, 1629–1635 (1998)

    Article  Google Scholar 

  10. C. Ang, Z. Yub, J. Appl. Phys. 91(3), 1 (2002)

    Article  Google Scholar 

  11. G.A. Smolensky et al., Sov. Phys. Solid State 2, 2584 (1967)

    Google Scholar 

  12. A.N. Gubkin, Sov. Phys. Solid State 2, 2733 (1961)

    Google Scholar 

  13. M.S. Alkathy, K.K. Bokinala, K.C. JamesRaju, Effect of Li and Bi co-substituted on structural and physical properties of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. (2015). doi:10.1007/s10854-015-4142-5

    Google Scholar 

  14. A. Kikuchi, L. Zhang, N. Okinaka, T. Tosho, T. Akiyama, Mater. Trans. 51(10), 1919–1922 (2010)

    Article  Google Scholar 

  15. J.Q. Qi, Z.L. Gui, Y.L. Wang, Y.J. Wu, L.T. Li, Difference of Bi2O3 doping effect between vapor process and solid process on Ba1−xSrxTiO3 semiconducting ceramics. Mater. Sci. Eng., B 95(3), 283–286 (2002)

    Article  Google Scholar 

  16. H.T. Jiang, J.W. Zhai, J.J. Zhang, X. Yao, Dielectric properties of low-temperature sintered Ba0.6Sr0.4TiO3 ceramics by addition of Bi2O3–CuO mixed oxides. Key Eng. Mater. 421–422, 61–64 (2010)

    Google Scholar 

  17. R.L. Fullman, Measurement of particle size in opaque bodies. Trans. AIME 197, 447–452 (1953)

    Google Scholar 

  18. Y. Zhi, A. Chen, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, J. Eur. Ceram. Soc. 18, 1629–1632 (1998)

    Article  Google Scholar 

  19. I. Burn, S. Neirman, J. Mater. Sci. 17, 3510 (1982)

    Article  Google Scholar 

  20. N.H. Chan, R.K. Sharma, D.M. Smyth, J. Electrochem. Soc. Solidstate Sci. Technol. 128, 1762 (1981)

    Article  Google Scholar 

  21. L.C. Walters, R.E. Grace, J. Phys. Chem. Solids 28, 239–245 (1967)

    Article  Google Scholar 

  22. N.G. Eror, U. Balachandran, J. Am. Ceram. Soc. 65, 426 (1982)

    Article  Google Scholar 

  23. A.E. Paladina, J. Am. Ceram. Soc. 48, 476 (1964)

    Article  Google Scholar 

  24. D.B. Schward, H.U. Anderson, J. Electrochem. Soc. 122, 707 (1975)

    Article  Google Scholar 

  25. N.G. Eror, U. Balachandran, J. Solid State Chem. 40, 85 (1981)

    Article  Google Scholar 

  26. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  27. E. Iguchi, K.J. Lee, J. Mater. Sci. 28, 5809 (1993)

    Article  Google Scholar 

  28. C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer, A. Loidl, Phys. Rev. B 61, 3922 (2000)

    Article  Google Scholar 

  29. R. Stumpe, D. Wagner, D. Bauerle, Phys. Status Solidi A 75, 143 (1983)

    Article  Google Scholar 

  30. B.P. Das, R.N.P. Choudary, P.K. Mohapatra, Mater. Sci. Eng., B 104, 96 (2003)

    Article  Google Scholar 

  31. V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mater. Sci. Eng., B 130, 163 (2006)

    Article  Google Scholar 

  32. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983), p. 326

    Google Scholar 

  33. A.K. Jonscher, Nature 253(27), 717 (1995)

    Google Scholar 

  34. R. Zuo, H. Wang, B. Ma, L. Li, J. Mater. Sci.: Mater. Electron. 20, 1140–1143 (2009). doi:10.1007/s10854-008-9840-9

    Google Scholar 

  35. F.A. Kroger, H.J. Vink, Solid State Phys. 3, 307–435 (1956)

    Google Scholar 

  36. S.R. Elliot, Adv. Phys. 36, 135–217 (1987)

    Article  Google Scholar 

  37. M.M. El-Desoky, K. Tahoon, M.Y. Hassan, Mater. Chem. Phys. 69, 180 (2001)

    Article  Google Scholar 

  38. R. Bahri, H.P. Singh, Thin Solid Films 69, 281 62,291 (1979)

  39. I.G. Austin, N.F. Mott, Adv. Phys. 18, 657 (1969)

    Article  Google Scholar 

  40. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  Google Scholar 

  41. T.M. Stevels, The Electrical Properties of Glasses. Handbook in Physics (Springer, Berlin, 1957), p. 350

    Google Scholar 

  42. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  Google Scholar 

  43. A.E. Bekheet, Phys. B 403, 4342 (2008)

    Article  Google Scholar 

  44. N.A. Hegab, M.A. Afifi, H.E. Atyia, A.S. Farid, J. Alloys Compd. 477, 925 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. James Raju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkathy, M.S., Raju, K.C.J. Effect of Bi and Li co-substituted SrTiO3 ceramics on structural and dielectric properties. J Mater Sci: Mater Electron 27, 8957–8965 (2016). https://doi.org/10.1007/s10854-016-4926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4926-2

Keywords

Navigation