Skip to main content

Advertisement

Log in

Effects of (Zn1/3Nb2/3)4+ co-substitution on structure and microwave dielectric properties of 0.75CaTiO3–0.25SmAlO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.75CaTi1-x(Zn1/3Nb2/3)xO3-0.25SmAlO3 (CT1-xZNxSA) (0 ≤ x ≤ 0.09) ceramics were synthesized by a solid-state reaction process. The effects of (Zn1/3Nb2/3)4+ co-substitution on the structure and dielectric properties of the ceramics were investigated. Every sample presented a single orthogonal perovskite structure. Moderate amounts of (Zn1/3Nb2/3)4+ substitution effectively improved the densification, dielectric properties, flexural strength, and lowered the sintering temperature, while excessive substitution deteriorated the overall performance. Excellent properties were achieved for 0.75CaTi0.97(Zn1/3Nb2/3)0.03O3-0.25SmAlO3 ceramics sintered at 1450 °C for 5 h, including εr = 54.23, Q × f = 31,063 GHz (at 4.85 GHz), τf =  + 16.7 ppm/℃, a =  + 10.99 ppm/℃, R = 135.16 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. W.S. Xia, F.Y. Yang, G.Y. Zhang, K. Han, D.C. Guo, J. Alloy. Compd. 656, 470 (2016). https://doi.org/10.1016/j.jallcom.2015.10.008

    Article  CAS  Google Scholar 

  2. G. Wang, Q.Y. Fu, H. Shi, F. Tian, M. Wang, L. Yan, Z.P. Zheng, W. Luo, Ceram. Int. 45, 22148 (2019). https://doi.org/10.1016/j.ceramint.2019.07.233

    Article  CAS  Google Scholar 

  3. X.Q. Chen, B.F. Zhao, N.C. Chen, J. Cheng, M.Z. Dang, F. Wang, X.W. Xu, H. Wang, J. Eur. Ceram. Soc. 42, 4969 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.05.027

    Article  CAS  Google Scholar 

  4. L. Li, H. Yan, X.M. Chen, Acta Phys. Sin. 69, 128401 (2020). https://doi.org/10.7498/aps.69.20200275

    Article  CAS  Google Scholar 

  5. X.Y. Yang, X.H. Wang, L.T. Li, Mater. Res. Bull. 67, 226 (2015). https://doi.org/10.1016/j.materresbull.2014.09.082

    Article  CAS  Google Scholar 

  6. L. Fang, H. Zhang, T.H. Huang, R.Z. Yuan, R. Dronskowski, Mater. Res. Bull. 39, 1649 (2004). https://doi.org/10.1016/j.materresbull.2004.05.015

    Article  CAS  Google Scholar 

  7. Y. Iqbal, R. Muhammad, J. Electron. Mater. 42, 452 (2013). https://doi.org/10.1007/s11664-012-2387-9

    Article  CAS  Google Scholar 

  8. A. Manan, I. Qazi, U.S. Khan, J. Electron. Mater. 43, 1419 (2014). https://doi.org/10.1007/s11664-014-3069-6

    Article  CAS  Google Scholar 

  9. A.N. Chen, J.M. Wu, L.J. Cheng, S.J. Liu, Y.X. Ma, H. Li, F. Liu, S. Chen, Y.S. Shi, C.H. Li, J. Eur. Ceram. Soc. 40, 1174 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.033

    Article  CAS  Google Scholar 

  10. X.Y. Yang, C.Y. Zhang, H.Y. Wu, F. Jiang, J. Ceram. Soc. Jpn. 128, 756 (2020). https://doi.org/10.2109/jcersj2.20132

    Article  CAS  Google Scholar 

  11. Z.M. Dou, G. Wang, J. Jiang, F. Zhang, T.J. Zhang, J. Adv. Ceram. 6, 20 (2017). https://doi.org/10.1007/s40145-016-0212-2

    Article  CAS  Google Scholar 

  12. J.J. Qu, D.L. Huang, X. Wei, F. Liu, C.L. Yuan, B.L. Qin, J. Mater. Sci.: Mater. Electron. 27, 11110 (2016). https://doi.org/10.1007/s10854-016-5228-4

    Article  CAS  Google Scholar 

  13. Z.H. Qin, Y.F. Huang, C.Y. Shen, M.L. Tang, J. Mater. Sci. Mater. Electron. 27, 4157 (2016). https://doi.org/10.1007/s10854-016-4277-z

    Article  CAS  Google Scholar 

  14. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, J. Eur. Ceram. Soc. 21, 1723 (2001). https://doi.org/10.1016/s0955-2219(01)00102-9

    Article  CAS  Google Scholar 

  15. J.M. Li, C.M. Zhang, H. Liu, T. Qiu, C.G. Fan, J. Adv. Ceram. 9, 558 (2020). https://doi.org/10.1007/s40145-020-0394-5

    Article  CAS  Google Scholar 

  16. X.Y. Yang, X.H. Wang, G.F. Yao, A. Ji, J.Y. Kim, L.T. Li, J. Mater. Sci. Mater. Electron. 24, 4662 (2013). https://doi.org/10.1007/s10854-013-1458-x

    Article  CAS  Google Scholar 

  17. Z.J. Gong, Z.F. Wang, L.X. Wang, Z.X. Fu, W. Han, Q.T. Zhang, Electron. Mater. Lett. 9, 331 (2013). https://doi.org/10.1007/s13391-013-2214-3

    Article  CAS  Google Scholar 

  18. C. Ciomaga, M. Viviani, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, J. Eur. Ceram. Soc. 27, 4061 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.095

    Article  CAS  Google Scholar 

  19. L. Shi, R. Peng, H.W. Zhang, C. Liu, G.W. Gan, X.L. Shi, X.Y. Wang, Ceram. Int. 47, 3354 (2021). https://doi.org/10.1016/j.ceramint.2020.09.179

    Article  CAS  Google Scholar 

  20. I. Hameed, S.Y. Wu, L. Li, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 102, 6137 (2019). https://doi.org/10.1111/jace.16510

    Article  CAS  Google Scholar 

  21. Y.K. Yang, H.L. Pan, H.T. Wu, Ceram. Int. 44, 11350 (2018). https://doi.org/10.1016/j.ceramint.2018.03.184

    Article  CAS  Google Scholar 

  22. L.M. Zhang, Y. Chang, M. Xin, X.F. Luo, H.J. Tao, Y. Fu, P.C. Li, H.Q. Zhou, J. Mater. Sci. Mater. Electron. 29, 21205 (2018). https://doi.org/10.1007/s10854-018-0270-z

    Article  CAS  Google Scholar 

  23. A. Thorvaldsen, Acta Mater. 45, 595 (1997). https://doi.org/10.1016/s1359-6454(96)00198-x

    Article  CAS  Google Scholar 

  24. L.S. Hu, H.Q. Zhou, Q.L. Sun, L.C. Ren, X.F. Luo, Y.K. Hu, Y.S. Xia, J. Mater. Sci. Mater. Electron. 27, 12834 (2016). https://doi.org/10.1007/s10854-016-5417-1

    Article  CAS  Google Scholar 

  25. A. Zhang, H.Q. Fan, D.W. Hou, F. Yang, Y.Q. Chen, W.J. Wang, W.Q. Dong, J. Alloy. Compd. 898, 162809 (2022). https://doi.org/10.1016/j.jallcom.2021.162809

    Article  CAS  Google Scholar 

  26. B.Y. Li, Y.M. Lai, Y.M. Zeng, F. Yang, F.Y. Huang, X.Z. Yang, F.S. Wang, C.S. Wu, X.L. Zhong, H. Su, Mater. Sci. Eng. B 276, 115572 (2022). https://doi.org/10.1016/j.mseb.2021.115572

    Article  CAS  Google Scholar 

  27. Q. Li, Y. Chang, H.Q. Zhou, J. Mater. Sci. Mater. Electron. 30, 9855 (2019). https://doi.org/10.1007/s10854-019-01322-z

    Article  CAS  Google Scholar 

  28. M. He, H.W. Zhang, J. Wan, H. Su, Solid State Sci. 14, 1467 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.08.015

    Article  CAS  Google Scholar 

  29. M. Li, Y. Tang, H.C. Xiang, J. Li, D. Zhou, L. Fang, Ceram. Int. 49, 8754 (2023). https://doi.org/10.1016/j.ceramint.2022.11.021

    Article  CAS  Google Scholar 

  30. R.D. Shannon, J. Appl. Phys. 73, 348 (1993). https://doi.org/10.1063/1.353856

    Article  CAS  Google Scholar 

  31. R.D. Shannon, R.X. Fischer, Phys. Rev. B 73, 235111 (2006). https://doi.org/10.1103/PhysRevB.73.235111

    Article  CAS  Google Scholar 

  32. Z.M. Dou, J. Jiang, G. Wang, F. Zhang, T.J. Zhang, Ceram. Int. 42, 6743 (2016). https://doi.org/10.1016/j.ceramint.2016.01.046

    Article  CAS  Google Scholar 

  33. R.C. Pullar, J.D. Breeze, N.M. Alford, J. Am. Ceram. Soc. 88, 2466 (2005). https://doi.org/10.1111/j.1551-2916.2005.00458.x

    Article  CAS  Google Scholar 

  34. C. Zhang, R.Z. Zuo, J. Zhang, Y. Wang, J. Jones, J. Am. Ceram. Soc. 98, 702 (2015). https://doi.org/10.1111/jace.13347

    Article  CAS  Google Scholar 

  35. E.L. Colla, I.M. Reaney, N. Setter, J. Appl. Phys. 74, 3414 (1993). https://doi.org/10.1063/1.354569

    Article  CAS  Google Scholar 

  36. R.G. Pearson, Proc. Natl. Acad. Sci. USA 72, 2104 (1975). https://doi.org/10.1073/pnas.72.6.2104

    Article  CAS  Google Scholar 

  37. V. Bata, E.V. Pereloma, Acta Mater. 52, 657 (2004). https://doi.org/10.1016/j.actamat.2003.10.002

    Article  CAS  Google Scholar 

  38. R. Muhammad, Y. Iqbal, Mater. Lett. 153, 121 (2015). https://doi.org/10.1016/j.matlet.2015.04.021

    Article  CAS  Google Scholar 

  39. A. Manan, I. Qazi, Bull. Mat. Sci. 37, 679 (2014). https://doi.org/10.1007/s12034-014-0670-5

    Article  CAS  Google Scholar 

  40. E.S. Kim, B.S. Chun, D.H. Kang, J. Eur. Ceram. Soc. 27, 3005 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.026

    Article  CAS  Google Scholar 

  41. D. Zou, Q.L. Zhang, H. Yang, J. Mater. Sci. Mater. Electron. 20, 756 (2008). https://doi.org/10.1007/s10854-008-9798-7

    Article  CAS  Google Scholar 

  42. A. Zaman, S. Uddin, N. Mehboob, A. Ali, Phys. Scr. 96, 25701 (2020). https://doi.org/10.1088/1402-4896/abce74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Key Research and Development Program of Zhejiang Province (Grant No. 2020C0112, 2021C01092)

Funding

This work was financed by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Key Research and Development Program of Zhejiang Province (Grant No. 2020C0112, 2021C01092).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception and design of the study. SL and YZ participated in the conception of this study, performed the experiments, analyzed the data, and wrote the manuscript. QW, YL, YS, TQ and HZ provided analysis and constructive discussion. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongqing Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Zhang, Y., Wang, Q. et al. Effects of (Zn1/3Nb2/3)4+ co-substitution on structure and microwave dielectric properties of 0.75CaTiO3–0.25SmAlO3 ceramics. J Mater Sci: Mater Electron 34, 1874 (2023). https://doi.org/10.1007/s10854-023-11275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11275-z

Navigation