Skip to main content
Log in

Novel 5MgO–3Li2O–4WO3 ceramic: preparation, phase evolution and its microwave dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new low-temperature firing microwave dielectric ceramic with the composition of 5MgO–3Li2O–4WO3 was synthesized by a solid-state reaction method. The ceramic was found to be a novel pure compound (Li2Mg2W2O9) when the sintering temperature was 720–760 °C, but transformed to mixed phases with Li2Mg2W2O9 and Li2WO4 when the sintering temperature was 820–840 °C. The ceramic sintered at ~820 °C exhibited good properties with relative permittivity of ~10.3, Q × f value about 20,537 GHz (at the frequency f ~ 11 GHz) and a negative temperature coefficient of resonant frequency of −76.9 ppm/°C. 5MgO–3Li2O–4WO3 ceramic had a promising application in low-temperature cofired ceramic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Wang, H.F. Zhou, X.L. Chen, X.B. Liu, L. Fang, C. Wang et al., Crystal structure and optimized microwave dielectric properties (1 − x)LiZn0.5Ti1.5O4-xTiO2 ceramics for application in dielectric resonator. J. Mater. Sci. Mater. Electron. 24, 2641–2645 (2013)

    Article  Google Scholar 

  2. M. Guo, G. Dou, Y.X. Li, S.P. Gong, The improvement research on microwave dielectric properties of magnesium tungstate for LTCC. J. Mater. Sci. Mater. Electron. 26, 608–612 (2015)

    Article  Google Scholar 

  3. K. Tang, Q. Wu, X.Y. Xiang, Low temperature sintering and microwave dielectric properties of zinc silicate ceramics. J. Mater. Sci. Mater. Electron. 23, 1099–1102 (2012)

    Article  Google Scholar 

  4. G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)

    Article  Google Scholar 

  5. G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J. Eur. Ceram. Soc. 27, 3063–3067 (2007)

    Article  Google Scholar 

  6. M. Guo, G. Dou, Y.X. Li, S.P. Gong, The improvement research on microwave dielectric properties of magnesium tungstate for LTCC. J. Mater. Sci.: Mater. Electron. 26, 608–612 (2015)

    Google Scholar 

  7. D.K. Kwon, M.T. Lanagan, T.R. Shrout, Microwave dielectric properties and low-temperature cofiring of BaTe4O9 with aluminum metal electrode. J. Am. Ceram. Soc. 88, 3419–3422 (2005)

    Article  Google Scholar 

  8. S. George, M.T. Sebastian, Low-temperature sintering and microwave dielectric properties of Li2ATi3O8 (A = Mg, Zn) ceramics. Int. J. Appl. Ceram. Technol. 8, 1400–1407 (2011)

    Article  Google Scholar 

  9. J. Krupka, Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys. 79, 195–198 (2003)

    Article  Google Scholar 

  10. A.A. Coelho, Coelho Software (Brisbane, Australia, 2005)

    Google Scholar 

  11. G. Halle, H.M. Buschbaum, Zur Kristallchemie der Oxotantalate M4Ta2O9. I. Über Mg4Ta2O9 und Mg2Ni2Ta2O9. Z. Anorg. Allg. Chem. 562, 87–90 (1988)

    Article  Google Scholar 

  12. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  Google Scholar 

  13. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Y.L. Wang, ZnLi2/3Ti4/3O4: a new low loss spinel microwave dielectric ceramic. J. Eur. Ceram. Soc. 32, 261–265 (2012)

    Article  Google Scholar 

  14. D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang et al., Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature. J. Am. Ceram. Soc. 94, 348–350 (2011)

    Article  Google Scholar 

  15. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, (1-x) MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A Mater. 81, 823–826 (2005)

    Article  Google Scholar 

  16. A. Kan, H. Ogawa, H. Ohsato, Microwave dielectric properties of Y2BaCuO5 compound substituted Ni for Cu. Mater. Sci. Eng. B 79, 180–182 (2001)

    Article  Google Scholar 

  17. A. Kuzmin, J. Purans, Local atomic and electronic structure of tungsten ions in AWO4 crystals of scheelite and wolframite types. Radiant. Meas. 32, 583–586 (2001)

    Article  Google Scholar 

  18. K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1 − x)ZnAl2O4-xTiO2 system for microwave substrate applications. Eur. Phys. J. B 41, 301–306 (2004)

    Article  Google Scholar 

  19. R.C. Pullar, C. Lai, F. Azough, R. Freer, N. McN, Alford, Novel microwave dielectric LTCCs based upon V2O5 doped M2 + Cu2Nb2O8 compounds (M2 += Zn Co, Ni, Mg and Ca). J. Eur. Ceram. Soc. 26, 1943–1946 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 11464009 and 11364012), Natural Science Foundation of Guangxi (No. 2013GXNSFAA019291, 2014GXNSFAA118326, and 2014GXNSFAA118312), Research Start–up Funds Doctor of Guilin University of Technology (Nos. 002401003281 and 002401003282) and Project of Outstanding Young Teachers’ Training in Higher Education Institutions of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Gong, J., Xu, J. et al. Novel 5MgO–3Li2O–4WO3 ceramic: preparation, phase evolution and its microwave dielectric properties. J Mater Sci: Mater Electron 27, 6389–6394 (2016). https://doi.org/10.1007/s10854-016-4574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4574-6

Keywords

Navigation