Skip to main content
Log in

Low temperature sintering and microwave dielectric properties of Li2O–3ZnO–5TiO2 ceramics doped with V2O5

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel low-temperature sinterable Li2O–3ZnO–5TiO2 (LZT135) ceramics were prepared through a solid-state reaction method. XRD and EDS results showed that the LZT135 ceramics formed solid solutions with a crystal structure similar to Zn2Ti3O8. The addition of V2O5 could decrease the sintering temperature of LZT135 ceramics to about 900 °C. When 0.6 wt% V2O5 was added, the LZT135 ceramics exhibited dielectric properties with relative permittivity (εr) = 20.2, quality factor (Q×f) = 59,000 GHz, and temperature coefficient of resonant frequency (τf) = − 30.2 ppm/°C at a sintering temperature of 900 °C. However, the τf value was still too high for industrial applications; therefore, TiO2 was added to the LZT135 ceramics to further adjust the τf value. Finally, near-zero τf values and simultaneously desirable Q×f values were maintained for the low-temperature sintered LZT135 ceramics. The LZT135 ceramics doped with 0.6 wt% V2O5 and 6 wt% TiO2 exhibited reasonably good microwave dielectric properties with εr = 24.3, Q×f = 51,700 GHz, and τf = 0.3 ppm/°C when sintered at 900 °C, thus showing a great potential for low-temperature co-firing ceramic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)

    Article  Google Scholar 

  2. S. George, P.S. Anjana, V.N. Deepu, P. Mohanan, M.T. Sebastian, J. Am. Ceram. Soc. 92, 1244 (2009)

    Article  Google Scholar 

  3. L.L. Yuan, J.J. Bian, Ferroelectrics 387, 123 (2009)

    Article  Google Scholar 

  4. D. Zhou, H. Wang, L.X. Pang, X. Yao, X.G. Wu, J. Am. Ceram. Soc. 91, 4115 (2008)

    Article  Google Scholar 

  5. A.Y. Borisevich, P.K. Davies, J. Am. Ceram. Soc. 85, 573 (2002)

    Article  Google Scholar 

  6. S. Bahel, R. Singh, G. Kaur, S.B. Narang, Ferroelectrics 502, 49 (2016)

    Article  Google Scholar 

  7. X.K. Lan, Z.Y. Zou, W.Z. Lu, J.H. Zhu, W. Lei, Ceram. Int. 42, 17731 (2016)

    Article  Google Scholar 

  8. Q.S. Cao, W.Z. Lu, X.C. Wang, J.H. Zhu, B. Ullah, W. Lei, Ceram. Int. 41, 9152 (2015)

    Article  Google Scholar 

  9. H.W. Chen, H. Su, H.W. Zhang, T.C. Zhou, B.W. Zhang, J.F. Zhang, X.L. Tang, Ceram. Int. 40, 14655 (2014)

    Article  Google Scholar 

  10. S. George, M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164 (2010)

    Article  Google Scholar 

  11. S. Georg, M.T. Sebastian, Int. J. Appl. Ceram. Technol. 8, 1400 (2011)

    Article  Google Scholar 

  12. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Y.L. Wang, J. Eur. Ceram. Soc. 32, 261 (2012)

    Article  Google Scholar 

  13. T.W. Zhang, R.Z. Zuo, Y. Wang, J. Mater. Sci.: Mater. Electron. 25, 5570 (2014)

    Google Scholar 

  14. Y. Wu, D. Zhou, J. Guo, L.X. Pang, J. Mater. Sci.: Mater. Electron. 24, 1505 (2013)

    Google Scholar 

  15. A. Sayyadi-Shahraki, E. Taheri-Nassaj, S.A. Hassanzadeh-Tabrizi, H. Barzegar-Bafrooei, J. Alloy. Compd. 597, 161 (2014)

    Article  Google Scholar 

  16. H.S. Ren, S.H. Jiang, M.Z. Dang, T.Y. Xie, H. Tang, H.Y. Peng, H.X. Lin, L. Luo, J. Alloy. Compd. 740, 1188 (2018)

    Article  Google Scholar 

  17. H.S. Ren, H.Y. Peng, T.Y. Xie, L. Hao, M.Z. Dang, Y. Zhang, S.H. Jiang, X.G. Yao, H.X. Lin, L. Luo, J. Mater. Sci.: Mater. Electron. 29, 9033 (2018)

    Google Scholar 

  18. X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, J. Alloy. Compd. 515, 22 (2012)

    Article  Google Scholar 

  19. H.F. Zhou, X.H. Tan, J. Huang, X.L. Chen, Ceram. Int. 43, 3688 (2017)

    Article  Google Scholar 

  20. M. He, H.W. Zhang, J. Alloy. Compd. 586, 627 (2014)

    Article  Google Scholar 

  21. H.F. Zhou, H. Wang, X.Y. Ding, X. Yao, J. Mater. Sci.: Mater. Electron. 20, 39 (2009)

    Google Scholar 

  22. W.C. Tzou, C.F. Yang, Y.C. Chen, P.S. Cheng, J. Eur. Ceram. Soc. 20, 991 (2000)

    Article  Google Scholar 

  23. A.E. Paladino, J. Am. Ceram. Soc. 54, 168 (1971)

    Article  Google Scholar 

  24. K. Fukuda, R. Kitoh, I. Awai, Jpn. J. Appl. Phys. 32, 4584 (1993)

    Article  Google Scholar 

  25. W. Lei, W.Z. Lu, J.H. Zhu, X.H. Wang, Mater. Lett. 61, 4066 (2007)

    Article  Google Scholar 

  26. B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  27. W.E. Courtney, IEEE Trans. Microwave Theory Tech. 18, 476 (1970)

    Article  Google Scholar 

  28. C.H. Hsu, Y.H. Chang, H.W. Yang, J.S. Lin, Ceram. Int. 39, 203 (2013)

    Article  Google Scholar 

  29. B.D. Silverman, Phys. Rev. 125, 1921 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Liu, J. & Zeng, Y. Low temperature sintering and microwave dielectric properties of Li2O–3ZnO–5TiO2 ceramics doped with V2O5. J Mater Sci: Mater Electron 29, 14455–14461 (2018). https://doi.org/10.1007/s10854-018-9578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9578-y

Navigation