Skip to main content
Log in

Crystal structure and optimized microwave dielectric properties of (1 − x) LiZn0.5Ti1.5O4xTiO2 ceramics for application in dielectric resonator

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave dielectric ceramics with the composition of (1−x) LiZn0.5Ti1.5O4 (LZT)–xTiO2 (0.05 ≤ x ≤ 0.4) were prepared by a solid-state reaction route. XRD patterns revealed that the samples consist of LiZn0.5Ti1.5O4 and rutile TiO2, and the amount of rutile TiO2 phase increased with increasing the x values. The microwave measurements show that the dielectric properties of ceramics can be improved with increasing x values. When x = 0.1, the temperature coefficient of resonant frequency (τ f ) of 0.9LZT–0.1TiO2 ceramic can be adjusted to a near-zero value of −1 ppm/°C, and permittivity (εr) and Q × f value are 26 and 45,000 GHz, respectively. These results indicate that 0.9LZT–0.1TiO2 ceramic can be a candidate in microwave dielectric resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.W. Lee, J.H. Park, J.S. Nahm, D.W. Kim, J.G. Park, Mater. Res. Bull. 45, 21–24 (2010)

    Article  CAS  Google Scholar 

  2. H. Jantunen, R. Rautioaho, A. Unsimäki, S. Leppävuori, J. Eur. Ceram. Soc. 20, 2331–2336 (2000)

    Article  CAS  Google Scholar 

  3. L. Fang, Q. Yu, C. Hu, H. Zhang, Mater. Lett. 61, 4140–4143 (2007)

    Article  CAS  Google Scholar 

  4. T. Sebastian, Dielectric materials for wireless communications (Elseiver Publishers, Oxford, 2008)

    Google Scholar 

  5. L. Fang, D.J. Chu, H.F. Zhou, X.L. Chen, H. Zhang, B.C. Chang, C.C. Li, Y.D. Qin, X. Huang, J. Alloys Compd. 35, 8840–8844 (2011)

    Article  Google Scholar 

  6. X.L. Chen, H.F. Zhou, L. Fang, X.B. Liu, Y.L. Wang, J. Alloys Compd. 19, 5829–5832 (2011)

    Article  Google Scholar 

  7. L.A. Khalam, M.T. Sebastian, J. Am. Ceram. Soc. 90, 1467–1474 (2007)

    Article  Google Scholar 

  8. K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Eur. Phys. J. B 41, 301–306 (2004)

    Article  CAS  Google Scholar 

  9. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, Appl. Phys. A 81, 823–826 (2005)

    Article  CAS  Google Scholar 

  10. W. Lei, W.Z. Lu, J.H. Zhu, X.H. Wang, Mater. Lett. 61, 4066–4069 (2007)

    Article  CAS  Google Scholar 

  11. Q.W. Liao, L.X. Li, P. Zhang, L.F. Cao, Y. Han. 176, 41–44 (2011)

    CAS  Google Scholar 

  12. J. Guo, D. Zhou, H. Wang, X. Yao, J. Alloys Compd. 509, 5863–5865 (2011)

    Article  CAS  Google Scholar 

  13. Z. Liang, L.L. Yuan, J.J. Bian, J. Alloys Compd. 509, 1893–1896 (2011)

    Article  CAS  Google Scholar 

  14. H.F. Zhou, X.L. Chen, L. Fang, D.J. Chu, H. Wang, J. Mater. Res. 25, 1235–1238 (2010)

    Article  CAS  Google Scholar 

  15. K. Fukuda, R. Kitoh, I. Awai, Jpn. J. Appl. Phys. 32, 4584–4588 (1993)

    Article  CAS  Google Scholar 

  16. D. Li, S.O. Chen, W.Q. Shao, D.C. Wang, Y.H. Li, Y.Z. Long, Z.W. Liu, S.P. Ringer, Mater. Technol. 25(1), 42–44 (2010)

    Google Scholar 

  17. Y.G. Wu, X.H. Zhao, F. Li, Z.G. Fan, J. Electroceram. 11, 227–239 (2003)

    Article  Google Scholar 

  18. L.X. Pang, H. Wang, D. Zhou, X. Yao, J. Alloys Compd. 493, 626–629 (2010)

    Article  CAS  Google Scholar 

  19. L.X. Pang, H. Wang, D. Zhou, X. Yao, J. Alloys Compd. 493, 626–629 (2010)

    Article  CAS  Google Scholar 

  20. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  CAS  Google Scholar 

  21. H. Tamura, Am. Ceram. Soc. Bull. 73, 92–95 (1994)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (nos. 51102058, 21061004 and 21261007), Project of Department of Science and Technology of Guangxi (nos. 2011GXNSFB018012, 2011GXNSFB018009, 2012GXNSFDA053024, and 11107006-42), Guilin (No. 20120112-1), Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning, and Research start-up funds Doctor of Guilin University of Technology (No. 002401003281 and No. 002401003282).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanfu Zhou, Xiuli Chen or Liang Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Zhou, H., Chen, X. et al. Crystal structure and optimized microwave dielectric properties of (1 − x) LiZn0.5Ti1.5O4xTiO2 ceramics for application in dielectric resonator. J Mater Sci: Mater Electron 24, 2641–2645 (2013). https://doi.org/10.1007/s10854-013-1150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1150-1

Keywords

Navigation