Skip to main content
Log in

Influence of ammonia sources on the gas sensing properties of the direct grown ZnO nanomaterials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanomaterials have been directly grown on Al2O3 ceramic tube by two step seeds-assisted solution method with different ammonia sources. The crystalline phase and morphology of the ZnO nanomaterials are characterized by XRD and SEM. The results of SEM reveal that the ZnO nanomaterials present different morphologies and hierarchical structures where rhombus-shaped nanoprisms, nanorods assembled nanoflowers and nanoleaves constructed nanourchins are obtained in NH4F, hexamethylenetetramine (HMT) and urea, respectively. All of the ZnO nanomaterials show the optimal working temperature at 320 °C and excellent repeatability. Gas sensing experiments demonstrate that the ZnO nanomateirals perform high responses and fast response-recovery to volatile organic compounds, especially for the nanorods assembled nanoflowers prepared in the HMT. It is believed that the enhancement of the gas sensing performances is mainly attributed to the hierarchical structures, exposed deficiencies and excellent ohm contact of the direct grown ZnO nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, M. Zacharias, Multifunctional ZnO-nanowire-based sensor. Adv. Funct. Mater. 21, 4342–4348 (2011)

    Article  Google Scholar 

  2. M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens. Actuators B Chem. 157, 565–574 (2011)

    Article  Google Scholar 

  3. E. Şennik, S. Kerli, Ü. Alver, Z.Z. Öztürk, Effect of fluorine doping on the NO2-sensing properties of ZnO thin films. Sens. Actuators B Chem. 216, 49–56 (2015)

    Article  Google Scholar 

  4. R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 152, 189–191 (2015)

    Article  Google Scholar 

  5. M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C 115, 12763–12773 (2011)

    Article  Google Scholar 

  6. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B Chem. 115, 247–251 (2006)

    Article  Google Scholar 

  7. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 196, 413–420 (2014)

    Article  Google Scholar 

  8. N.D. Khoang, H.S. Hong, D.D. Trung, N.V. Duy, N.D. Hoa, D.D. Thinh, N.V. Hieu, On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sens. Actuators B Chem. 181, 529–536 (2013)

    Article  Google Scholar 

  9. V.A. Minh, L.A. Tuan, T.Q. Huy, V.N. Hung, N.V. Quy, Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 265, 458–464 (2013)

    Article  Google Scholar 

  10. P. Sundara Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sens. Actuators B Chem. 212, 10–17 (2015)

    Article  Google Scholar 

  11. K. Diao, M. Zhou, J. Zhang, Y. Tang, S. Wang, X. Cui, High response to H2S gas with facile synthesized hierarchical ZnO microstructures. Sens. Actuators B Chem. 219, 30–37 (2015)

    Article  Google Scholar 

  12. Z.S. Hosseini, A. Mortezaali, A. Iraji zad, S. Fardindoost, Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J. Alloys Comp. 628, 222–229 (2015)

    Article  Google Scholar 

  13. Z.S. Hosseini, A.I. Zad, A. Mortezaali, Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens. Actuators B Chem. 207A, 865–871 (2015)

    Article  Google Scholar 

  14. A. Mortezaali, R. Moradi, The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors. Sens. Actuators A Phys. 206, 30–34 (2014)

    Article  Google Scholar 

  15. N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, H. Ahmad, L.Y. Low, ZnO thin films for VOC sensing applications. Vacuum 85, 101–106 (2010)

    Article  Google Scholar 

  16. I. Elmi, S. Zampolli, E. Cozzani, F. Mancarella, G.C. Cardinali, Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sens. Actuators B Chem. 135, 342–351 (2008)

    Article  Google Scholar 

  17. N. Kilinc, O. Cakmak, A. Kosemen, E. Ermek, S. Ozturk, Y. Yerli, Z.Z. Ozturk, H. Urey, Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens. Actuators B Chem. 202, 357–364 (2014)

    Article  Google Scholar 

  18. Y.V. Kaneti, J. Yue, X. Jiang, A. Yu, Controllable synthesis of ZnO nanoflakes with exposed (1010) for enhanced gas sensing performance. J. Phys. Chem. C 117, 13153–13162 (2013)

    Article  Google Scholar 

  19. W. Guo, T. Liu, H. Zhang, R. Sun, Y. Chen, W. Zeng, Z. Wang, Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology. Sens. Actuators B Chem. 166–167, 492–499 (2012)

    Article  Google Scholar 

  20. K.M. Kim, H.R. Kim, K.I. Choi, H.J. Kim, J.H. Lee, ZnO hierarchical nanostructures grown at room temperature and their C2H5OH sensor applications. Sens. Actuators B Chem. 155, 745–751 (2011)

    Article  Google Scholar 

  21. S. Ma, R. Li, C. Lv, W. Xu, X. Gou, Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications. J. Hazard. Mater. 192, 730–740 (2011)

    Article  Google Scholar 

  22. M.R. Alenezi, T.H. Alzanki, A.M. Almeshal, A.S. Alshammari, M.J. Beliatis, S.J. Henley, S.R.P. Silva, Hierarchically designed ZnO nanostructure based high performance gas sensors. RSC Adv 4, 49521–49528 (2014)

    Article  Google Scholar 

  23. M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235–247 (2014)

    Article  Google Scholar 

  24. H. Zhang, R. Wu, Z. Chen, G. Liu, Z. Zhang, Z. Jiao, Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties. CrystEngComm 14, 1775–1782 (2012)

    Article  Google Scholar 

  25. Z. Chen, Z. Lin, Y. Hong, N. Li, M. Xu, Hydrothermal synthesis of hierarchically porous Rh-doped ZnO and its high gas sensing performance to acetone. J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-4069-x

    Google Scholar 

  26. D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, B. Cao, Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction. Sens. Actuators B Chem. 200, 288–296 (2014)

    Article  Google Scholar 

  27. D.X. Ju, H.Y. Xu, J. Zhang, J. Guo, B.Q. Cao, Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sens. Actuators B Chem. 201, 444–451 (2014)

    Article  Google Scholar 

  28. S.L. Zhang, J.O. Lim, J.S. Huh, J.S. Noh, W. Lee, Two-step fabrication of ZnO nanosheets for high-performance VOCs gas sensor. Curr. Appl. Phys. 13S2, S156–S161 (2013)

    Article  Google Scholar 

  29. W. Guo, T. Liu, Z. Guo, W. Zeng, Y. Chen, Z. Wang, Hydrothermal synthesis of ultrathin ZnO nanosheets and their gas-sensing properties. J. Mater. Sci. Mater. Electron. 24, 1764–1769 (2013)

    Article  Google Scholar 

  30. J. Du, R. Zhao, S. Chen, H. Wang, J. Li, Z. Zhu, Self-assembly of gridlike zinc oxide lamellae for chemical-sensing applications. ACS Appl Mater. Interfaces 7, 5870–5878 (2015)

    Article  Google Scholar 

  31. A. Zou, L. Hu, Y. Qiu, G. Cao, J. Yu, L. Wang, H. Zhang, B. Yin, L. Xu, High performance of 1-D ZnO microwire with curve-side hexagon as ethanol gas sensor. J. Mater. Sci. Mater. Electron. 26, 4908–4912 (2015)

    Article  Google Scholar 

  32. F. Li, H. Zhang, L. Hu, Y. Luo, Y. Zhao, Y. Qiu, J. Ji, L. Yue, A novel ethanol gas sensor based on ZnO microwire. J. Mater. Sci. Mater. Electron. 24, 4812–4816 (2013)

    Article  Google Scholar 

  33. D. Calestani, R. Mosca, M. Zanichelli, M. Villani, A. Zappettini, Aldehyde detection by ZnO tetrapod-based gas sensors. J. Mater. Chem. 21, 15532–15536 (2011)

    Article  Google Scholar 

  34. S. Tian, F. Yang, D. Zeng, C. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. C 116, 10586–10591 (2012)

    Article  Google Scholar 

  35. L.J. Bie, X.N. Yan, J. Yin, Y.Q. Duan, Z.H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol. Sens. Actuators B Chem. 126, 604–608 (2007)

    Article  Google Scholar 

  36. Z. Wen, L. Zhu, Z. Zhang, Z. Ye, Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays. Sens. Actuators B Chem. 208, 112–121 (2015)

    Article  Google Scholar 

  37. W. Guo, T. Liu, L. Huang, H. Zhang, Q. Zhou, W. Zeng, HMT assisted hydrothermal synthesis of various ZnO nanostructures: structure, growth and gas sensor properties. Physica E 44, 680–685 (2011)

    Article  Google Scholar 

  38. X. Tian, L. Yang, X. Qing, K. Yu, X. Wang, Trace level detection of hydrogen gas using birnessite-type manganese oxide. Sens. Actuators B Chem. 207A, 34–42 (2015)

    Article  Google Scholar 

  39. F. Grasset, N. Saito, D. Li, D. Park, I. Sakaguchi, N. Ohashi, H. Haneda, T. Roisnel, S. Mornet, E. Duguet, Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. J. Alloys Comp. 360, 298–311 (2003)

    Article  Google Scholar 

  40. F. Meng, N. Hou, S. Ge, B. Sun, Z. Jin, W. Shen, L. Kong, Z. Guo, Y. Sun, H. Wu, C. Wang, M. Li, Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs). J. Alloys Comp. 626, 124–130 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Foundation of CAEP (426030302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinfeng Wang or Jie Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Yu, K., Wang, X. et al. Influence of ammonia sources on the gas sensing properties of the direct grown ZnO nanomaterials. J Mater Sci: Mater Electron 27, 4711–4722 (2016). https://doi.org/10.1007/s10854-016-4351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4351-6

Keywords

Navigation