Skip to main content
Log in

Tuning the surface morphologies of ZnO nanofilms for enhanced sensitivity and selectivity of CO2 gas sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, ZnO has been synthesized with a variety of nanomorphologies, including nanorods (NRs), nanodiscs (NDs), and nanorods/nanodiscs (NRs/NDs), to enhance CO2 gas detection at room temperature. The ZnO nanostructures were made by combining the successive ionic layer adsorption and reaction (SILAR) strategy and the chemical bath deposition (CBD) method. The time of CBD varied from 6 to 12 h. Several techniques, including X-ray diffraction (XRD) spectroscopy, energy-dispersive X-ray (EDAX) spectrometry, optical spectrophotometer, and field emission scanning electron microscopy (FE-SEM), were used to investigate the manufactured ZnO nanostructures. The FE-SEM demonstrates that by increasing the deposition period of CBD from 6 to 12 h, the shape of ZnO nanostructures changed from NRs/NDs to NDs. According to the XRD, all ZnO nanostructured samples exhibit hexagonal wurtzite structures with (002) preferred orientation. Additionally, the crystallite size along orientation (002) increases from 63 to 65 nm as the deposition duration increases from 6 to 12 h. The bandgap of ZnO was reduced from 3.62 to 3.31 eV. When the deposition time is increased from 6 to 12 h, the sensitivity increases from 8.46 to 28.7%, the detection limit rises from 4.65 to 9.95 SCCM, and the limit of quantification rises from 15.52 to 33.16 SCCM. Moreover, the ZnO @ 12 h sensors has excellent selectivity as well since it reacts to CO2 with a higher response sensitivity than it does to other gases like hydrogen and ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. D. Read, A. Bostrom, M.G. Morgan, B. Fischhoff, T. Smuts, What do people know about global climate change? Risk Anal. An Int. J. 14, 971–982 (1994)

    Article  Google Scholar 

  2. K. Steinberg, J. Zimmermann, K.T. Stiller, S. Meyer, C. Schulz, The effect of carbon dioxide on growth and energy metabolism in pikeperch (Sander lucioperca). Aquaculture 481, 162–168 (2017). https://doi.org/10.1016/J.AQUACULTURE.2017.09.003

    Article  Google Scholar 

  3. M.A. Basyooni, M. Shaban, A.M. El Sayed, Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci. Rep. (2017). https://doi.org/10.1038/SREP41716

    Article  Google Scholar 

  4. J. Huber, A. Ambs, S. Rademacher, J. Wöllenstein, A selective, miniaturized, low-cost detection element for a photoacoustic CO2 sensor for room climate monitoring. Proc. Eng. 87, 1168–1171 (2014). https://doi.org/10.1016/J.PROENG.2014.11.374

    Article  Google Scholar 

  5. Z. Zhang et al., Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater. Charact. 171, 110732 (2021). https://doi.org/10.1016/J.MATCHAR.2020.110732

    Article  Google Scholar 

  6. X.Y. Li, Y. Song, C.X. Zhang, C.X. Zhao, C. He, Inverse CO2/C2H2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving. Sep. Purif. Technol. 279, 119608 (2021). https://doi.org/10.1016/J.SEPPUR.2021.119608

    Article  Google Scholar 

  7. R. Wu, Y. Tan, F. Meng, Y. Zhang, Y.X. Huang, PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation. Desalination 540, 116013 (2022). https://doi.org/10.1016/J.DESAL.2022.116013

    Article  Google Scholar 

  8. F. Mukhtar et al., Highly efficient tri-phase TiO2–Y2O3–V2O5 nanocomposite: structural, optical, photocatalyst, and antibacterial studies. J. Nanostruct. Chem. 12, 547–564 (2021). https://doi.org/10.1007/S40097-021-00430-9

    Article  Google Scholar 

  9. F. Mukhtar et al., Enhancement in carrier separation of ZnO–Ho2O3–Sm2O3 hetrostuctured nanocomposite with rGO and PANI supported direct dual Z-scheme for antimicrobial inactivation and sunlight driven photocatalysis. Adv. Powder Technol. 32, 3770–3787 (2021). https://doi.org/10.1016/J.APT.2021.08.022

    Article  Google Scholar 

  10. F. Mukhtar et al., Multi metal oxide NiO–Fe2O3–CdO nanocomposite-synthesis, photocatalytic and antibacterial properties. Appl. Phys. A Mater. Sci. Process. 126, 1–14 (2020). https://doi.org/10.1007/S00339-020-03776-Z/TABLES/3

    Article  Google Scholar 

  11. F. Mukhtar, T. Munawar, M.S. Nadeem, M.N. ur Rehman, M. Riaz, F. Iqbal, Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mater. Chem. Phys. 263, 124372 (2021). https://doi.org/10.1016/J.MATCHEMPHYS.2021.124372

    Article  Google Scholar 

  12. A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000). https://doi.org/10.1126/science.287.5459.1801

    Article  ADS  Google Scholar 

  13. N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011). https://doi.org/10.1038/NMAT3029

    Article  ADS  Google Scholar 

  14. D.-J. Yang, I. Kamienchick, D.Y. Youn, A. Rothschild, I.-D. Kim, Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater. 20, 4258–4264 (2010). https://doi.org/10.1002/ADFM.201001251

    Article  Google Scholar 

  15. J. Wojnarowicz, T. Chudoba, W. Lojkowski, A review of microwave synthesis of zinc oxide nanomaterials: reactants, process parameters and morphologies. Nanomaterials 10, 1086 (2020). https://doi.org/10.3390/NANO10061086

    Article  Google Scholar 

  16. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014). https://doi.org/10.3390/MA7042833

    Article  ADS  Google Scholar 

  17. H. Suhad, H.Z. Neihaya, A.L. Raghad, Evaluating the biological activities of biosynthesized ZnO nanoparticles using Escherichia coli. Casp. J. Environ. Sci. 19, 809–815 (2021). https://doi.org/10.22124/CJES.2021.5221

    Article  Google Scholar 

  18. M. Mansouri, M. Nademi, M. Ebrahim Olya, H. Lotfi, Study of methyl tert-butyl ether (MTBE) photocatalytic degradation with UV/TiO2–ZnO–CuO nanoparticles. J. Chem. Heal. Risks 7, 19–32 (2017). https://doi.org/10.22034/JCHR.2017.544161

    Article  Google Scholar 

  19. C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured Zno. J. Phys. Chem. B 105, 5585–5588 (2001). https://doi.org/10.1021/jp004121x

    Article  Google Scholar 

  20. Y.H. Chen, Y.M. Shen, S.C. Wang, J.L. Huang, Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition. Thin Solid Films 570, 303–309 (2014). https://doi.org/10.1016/j.tsf.2014.03.014

    Article  ADS  Google Scholar 

  21. V.Q. Dang et al., Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector. Small 11, 3054–3065 (2015). https://doi.org/10.1002/smll.201403625

    Article  Google Scholar 

  22. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16, R829 (2004). https://doi.org/10.1088/0953-8984/16/25/R01

    Article  ADS  Google Scholar 

  23. X. Han et al., Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 48, 9180–9183 (2009). https://doi.org/10.1002/anie.200903926

    Article  Google Scholar 

  24. D. Kuang et al., Performance improvement of flexible ultraviolet photodetectors based on ZnO nanorod arrays by hydrothermal method with assistance of polyethyleneimine. J. Alloys Compd. 899, 163185 (2022). https://doi.org/10.1016/J.JALLCOM.2021.163185

    Article  Google Scholar 

  25. B.J. Lee, S.I. Jo, S.G. Heo, W.Y. Lee, G.H. Jeong, Structure-controllable synthesis of ZnO nanowires using water vapor in an atmospheric-pressure microwave plasma system. Curr. Appl. Phys. 28, 52–58 (2021). https://doi.org/10.1016/J.CAP.2021.05.004

    Article  ADS  Google Scholar 

  26. M.S. Krishna, S. Singh, Disconnected N-doped zigzag ZnO nanoribbon for potential negative differential resistance (NDR) applications. Microelectron. J. 115, 105204 (2021). https://doi.org/10.1016/J.MEJO.2021.105204

    Article  Google Scholar 

  27. Y. Fan, Y. Xu, Y. Wang, Y. Sun, Fabrication and characterization of co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit. J. Alloys Compd. 876, 160170 (2021). https://doi.org/10.1016/J.JALLCOM.2021.160170

    Article  Google Scholar 

  28. X.X. Chen et al., Selectively enhanced gas-sensing performance to n-butanol based on uniform CdO-decorated porous ZnO nanobelts. Sensors Actuators B Chem. 334, 129667 (2021). https://doi.org/10.1016/J.SNB.2021.129667

    Article  ADS  Google Scholar 

  29. J. Li et al., Flower-like ZnO nanosheets grown on O2 plasma treated monolayer graphene and its photocatalytic property. Optik (Stuttg.) 251, 168476 (2022). https://doi.org/10.1016/J.IJLEO.2021.168476

    Article  ADS  Google Scholar 

  30. K. Choudhary, R. Saini, G.K. Upadhyay, L.P. Purohit, Sustainable behavior of cauliflower like morphology of Y-doped ZnO:CdO nanocomposite thin films for CO2 gas sensing application at low operating temperature. J. Alloys Compd. 879, 160479 (2021). https://doi.org/10.1016/J.JALLCOM.2021.160479

    Article  Google Scholar 

  31. S.G. Onkar, S.B. Nagdeote, A.S. Wadatkar, P.B. Kharat, Gas sensing behavior of ZnO thick film sensor towards H2S, NH3, LPG and CO2. J. Phys. Conf. Ser. 1644, 012060 (2020). https://doi.org/10.1088/1742-6596/1644/1/012060

    Article  Google Scholar 

  32. R. Dhahri et al., Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors. Sensors Actuators B Chem. 239, 36–44 (2017). https://doi.org/10.1016/J.SNB.2016.07.155

    Article  Google Scholar 

  33. M.S. Cao et al., Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91, 89–92 (2007). https://doi.org/10.1063/1.2803764

    Article  Google Scholar 

  34. D. Park, Y. Tak, K. Yong, Fabrication and characterization of ZnO nanoneedle array using metal organic chemical vapor deposition. J. Nanosci. Nanotechnol. 8, 623–627 (2008). https://doi.org/10.1166/JNN.2008.D207

    Article  Google Scholar 

  35. H. Cao, J.Y. Wu, H.C. Ong, J.Y. Dai, R.P.H. Chang, Second harmonic generation in laser ablated zinc oxide thin films. Appl. Phys. Lett. 73, 572–574 (1998). https://doi.org/10.1063/1.121859

    Article  ADS  Google Scholar 

  36. E. Monroy, F. Omnès, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18, R33 (2003). https://doi.org/10.1088/0268-1242/18/4/201

    Article  ADS  Google Scholar 

  37. R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, Nanostructured GdxZn1xO thin films by nebulizer spray pyrolysis technique: role of doping concentration on the structural and optical properties. Superlatt. Microstruct. 59, 47–59 (2013). https://doi.org/10.1016/j.spmi.2013.03.009

    Article  ADS  Google Scholar 

  38. J.R. Mohamed, C. Sanjeeviraja, L. Amalraj, Influence of substrate temperature on physical properties of (111) oriented CdIn2S4 thin films by nebulized spray pyrolysis technique. J. Asian Ceram. Soc. 4, 191–200 (2016). https://doi.org/10.1016/J.JASCER.2016.03.002

    Article  Google Scholar 

  39. M. Soylu, O. Savas, Electrical and optical properties of ZnO/Si heterojunctions as a function of the Mg dopant content. Mater. Sci. Semicond. Process. 29, 76–82 (2015). https://doi.org/10.1016/j.mssp.2013.09.008

    Article  Google Scholar 

  40. D. Li, J.F. Huang, L.Y. Cao, J.Y. Li, H.B. Ouyang, C.Y. Yao, Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties. Ceram. Int. 40, 2647–2653 (2014). https://doi.org/10.1016/J.CERAMINT.2013.10.061

    Article  Google Scholar 

  41. S. Kunj, K. Sreenivas, Residual stress in sputtered ZnO films grown on unheated substrates. Adv. Sci. Lett. 22, 3951–3953 (2016). https://doi.org/10.1166/ASL.2016.8028

    Article  Google Scholar 

  42. N.C. Das, S. Biswas, P.E. Sokol, The photovoltaic performance of ZnO nanorods in bulk heterojunction solar cells. J. Renew. Sustain. Energy. 3, 033105 (2011). https://doi.org/10.1063/1.3599838

    Article  Google Scholar 

  43. R. Sreeja Sreedharan, R. Vinodkumar, I. Navas, R. Prabhu, V.P. Mahadevan Pillai, Influence of Pr doping on the structural, morphological, optical, luminescent and non-linear optical properties of RF-sputtered ZnO films. JOM 68, 341–350 (2016). https://doi.org/10.1007/s11837-015-1632-0

    Article  ADS  Google Scholar 

  44. D. Zaouk, Y. Zaatar, R. Asmar, J. Jabbour, Piezoelectric zinc oxide by electrostatic spray pyrolysis. Microelectron. J. 37, 1276–1279 (2006). https://doi.org/10.1016/J.MEJO.2006.07.024

    Article  Google Scholar 

  45. M. Zayed, N. Nasser, M. Shaban, H. Alshaikh, H. Hamdy, A.M. Ahmed, Effect of morphology and plasmonic on Au/ZnO films for efficient photoelectrochemical water splitting. Nanomaterials 11, 1–20 (2021). https://doi.org/10.3390/nano11092338

    Article  Google Scholar 

  46. M. Shaban, K. Abdelkarem, A.M. El Sayed, Structural, optical and gas sensing properties of Cu2O/CuO mixed phase: effect of the number of coated layers and (Cr + S) co-doping. Phase Transit. 92, 347–359 (2019). https://doi.org/10.1080/01411594.2019.1581886

    Article  Google Scholar 

  47. M. Shaban, A.M. El Sayed, Effects of lanthanum and sodium on the structural, optical and hydrophilic properties of sol-gel derived ZnO films: a comparative study. Mater. Sci. Semicond. Process. 41, 323–334 (2016). https://doi.org/10.1016/j.mssp.2015.09.002

    Article  Google Scholar 

  48. M. Shaban, M. Mustafa, A.M. El Sayed, Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; influence of copper doping, annealing, and deposition parameters. Mater. Sci. Semicond. Process. 56, 329–343 (2016). https://doi.org/10.1016/j.mssp.2016.09.006

    Article  Google Scholar 

  49. J.A. Mary, J.J. Vijaya, J.H. Dai, M. Bououdina, L. John Kennedy, Y. Song, Experimental and first-principles DFT studies of electronic, optical and magnetic properties of cerium-manganese codoped zinc oxide nanostructures. Mater. Sci. Semicond. Process. 34, 27–38 (2015). https://doi.org/10.1016/j.mssp.2015.02.001

    Article  Google Scholar 

  50. M. Shaban, A.M. El Sayed, Influences of lead and magnesium co-doping on the nanostructural, optical properties and wettability of spin coated zinc oxide films. Mater. Sci. Semicond. Process. 39, 136–147 (2015). https://doi.org/10.1016/j.mssp.2015.04.008

    Article  Google Scholar 

  51. C. Suryanarayana, M. G. Norton, X-rays and diffraction, in X-ray Diffraction (Springer, London, 1998), pp. 3–19.

  52. B. Cao, W. Cai, From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C. 112, 680–685 (2008). https://doi.org/10.1021/jp076870l

    Article  Google Scholar 

  53. M. Shaban, M. Zayed, H. Hamdy, Nanostructured ZnO thin films for self-cleaning applications. RSC Adv. 7, 617–631 (2017). https://doi.org/10.1039/c6ra24788a

    Article  ADS  Google Scholar 

  54. M. Morsy, I.S. Yahia, H.Y. Zahran, F. Meng, M. Ibrahim, Portable and battery operated ammonia gas sensor based on CNTs/rGO/ZnO nanocomposite. J. Electron. Mater. 48, 7328–7335 (2019). https://doi.org/10.1007/s11664-019-07550-7

    Article  ADS  Google Scholar 

  55. F. Mukhtar et al., Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. Adv. Powder Technol. 33, 103708 (2022). https://doi.org/10.1016/J.APT.2022.103708

    Article  MathSciNet  Google Scholar 

  56. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/ACS.JPCLETT.8B02892/SUPPL_FILE/JZ8B02892_LIVESLIDES.MP4

    Article  Google Scholar 

  57. K. Punia et al., Oxygen vacancies mediated cooperative magnetism in ZnO nanocrystals: a d0 ferromagnetic case study. Vacuum 184, 109921 (2021). https://doi.org/10.1016/J.VACUUM.2020.109921

    Article  ADS  Google Scholar 

  58. R. Mimouni, K. Boubaker, M. Amlouk, Investigation of structural and optical properties in cobalt-chromium co-doped ZnO thin films within the lattice compatibility theory scope. J. Alloys Compd. 624, 189–194 (2015). https://doi.org/10.1016/J.JALLCOM.2014.11.016

    Article  Google Scholar 

  59. A.M. El Sayed, A. Ibrahim, Structural and optical characterizations of spin coated cobalt-doped cadmium oxide nanostructured thin films. Mater. Sci. Semicond. Process. 26, 320–328 (2014). https://doi.org/10.1016/J.MSSP.2014.05.019

    Article  Google Scholar 

  60. J. Shi, J. Zhang, L. Yang, M. Qu, D.C. Qi, K.H.L. Zhang, Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Adv. Mater. 33, 2006230 (2021). https://doi.org/10.1002/ADMA.202006230

    Article  Google Scholar 

  61. B. Sawicki, E. Tomaszewicz, M. Piątkowska, T. Groń, H. Duda, K. Górny, Correlation between the band-gap energy and the electrical conductivity in MPr2W2O10 tungstates (where M = Cd Co, Mn). Acta Phys. Pol. A 129, A94–A96 (2016). https://doi.org/10.12693/APHYSPOLA.129.A-94

    Article  ADS  Google Scholar 

  62. D.-D. Lee, S.-D. Choi, K.-W. Lee, Carbon dioxide sensor using NASICON prepared by the sol–gel method. Sensors Actuators B Chem. 25, 607–609 (1995)

    Article  Google Scholar 

  63. J. Li, W. Zhang, J. Sun, Enhanced NO2 detection using hierarchical porous ZnO nanoflowers modified with graphene. Ceram. Int. 42, 9851–9857 (2016). https://doi.org/10.1016/j.ceramint.2016.03.083

    Article  Google Scholar 

  64. L.V. Thong et al., On-chip fabrication of SnO2-nanowire gas sensor: the effect of growth time on sensor performance. Sensors Actuators B Chem. 146, 361–367 (2010). https://doi.org/10.1016/j.snb.2010.02.054

    Article  Google Scholar 

  65. M.R.U.D. Biswas, W.-C. Oh, Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites. RSC Adv. 9, 11484–11492 (2019). https://doi.org/10.1039/C9RA00007K

    Article  ADS  Google Scholar 

  66. S. Li et al., The room temperature gas sensor based on Polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sensors Actuators B Chem. 259, 505–513 (2018). https://doi.org/10.1016/J.SNB.2017.11.081

    Article  Google Scholar 

  67. R. Saad et al., Fabrication of ZnO/CNTs for application in CO2 sensor at room temperature. Nanomaterials 11, 3087 (2021). https://doi.org/10.3390/NANO11113087

    Article  Google Scholar 

  68. T.J. Hsueh, R.Y. Ding, A room temperature ZnO-NPs/MEMS ammonia gas sensor. Nanomaterials 12, 3287 (2022). https://doi.org/10.3390/NANO12193287

    Article  Google Scholar 

  69. P. Samarasekara, N.U.S. Yapa, N.T.R.N. Kumara, M.V.K. Perera, CO2 gas sensitivity of sputtered zinc oxide thin films. Bull. Mater. Sci. 30, 113–116 (2007). https://doi.org/10.1007/S12034-007-0020-Y/METRICS

    Article  Google Scholar 

  70. B. Altun, I. Karaduman Er, A.O. Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A Mater. Sci. Process. 127, 1–13 (2021). https://doi.org/10.1007/S00339-021-04843-9/TABLES/4

    Article  Google Scholar 

  71. A. Kumar, M. Alagappan, R. George, K.M. Janani, Facile flexible sensors based on CNT-metal oxide nanocomposites for CO2 sensing. Nanomaterials (2021). https://doi.org/10.4108/EAI.7-12-2021.2314737

    Article  Google Scholar 

  72. O. Lupan et al., Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications. Mater. Res. Bull. 44, 63–69 (2009). https://doi.org/10.1016/J.MATERRESBULL.2008.04.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jouf University under Grant No. (DSR-2021-03-0311).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to T. A. Taha or Ashour M. Ahmed.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Hereby, I the corresponding author declare that the authors have thoroughly read the Journal Policy. Here, I declare that this contribution is original and has not been published anywhere. Also, I declare that this article doesn’t contain any plagiarized materials.

Consent to participate

All of the co-workers have agreed to participate.

Consent for publication

All of the co-workers have agreed to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A., Saad, R., Zayed, M. et al. Tuning the surface morphologies of ZnO nanofilms for enhanced sensitivity and selectivity of CO2 gas sensor. Appl. Phys. A 129, 115 (2023). https://doi.org/10.1007/s00339-023-06387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06387-6

Keywords

Navigation