Skip to main content

Advertisement

Log in

Fabrication and characterization of nanostructured indium tin oxide film and its application as humidity and gas sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the synthesis and characterization of nanocrystalline indium tin oxide (ITO) and its application as humidity and gas sensors. The structure and crystallite size of the synthesized powder were determined by X-ray diffraction. The minimum crystallite size was found 5 nm by Debye–Scherrer equation and confirmed by transmission electron microscopy image. Optical characterizations of ITO were studied using UV–visible absorption spectroscopy and Fourier transforms infrared spectroscopy. Thermal analysis was carried out by differential scanning calorimetry. Further, the ITO thin film was fabricated using sol–gel spin coating method. The surface morphology of the fabricated film was investigated using scanning electron microscopy images. For the study of humidity sensing, the thin film of ITO was exposed with humidity in a controlled humidity chamber. The variations in resistance of the film with relative humidity were observed. The average sensitivity of the humidity sensor was found 0.70 MΩ/%RH. In addition, we have also investigated the carbon dioxide (CO2) and liquefied petroleum gas sensing behaviour of the fabricated film. Maximum sensitivity of the film was ~17 towards CO2. Its response and recovery times were ~5 and 7 min respectively. Sensor based on CO2 is 97 % reproducible after 3 months of its fabrication. Better sensitivity, small response time and good reproducibility recognized that the fabricated sensor is challenging for the detection of carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Cheng, E. Stern, S. Guthrie et al., Appl. Phys. A 85, 233–240 (2006)

    Article  Google Scholar 

  2. F.O. Adurodija, L. Semple, R. Bruning, J. Mater. Sci. 41, 7096–7102 (2006)

    Article  Google Scholar 

  3. C. Booth, P. Raynes, Liquid-crystal displays. Phys. World 10, 33–37 (1997)

    Article  Google Scholar 

  4. R. Waser, Field emission and plasma displays. Nanoelectron. Inf. Technol. 39, 935–957 (2003)

    Google Scholar 

  5. S. Yotsuya, Organic electroluminescent display panel, method of manufacturing it and display device equipped with the panel, European patent N-o EP 1484 946 (2004)

  6. C.W. Park, K.S. Choi, Vaccum fluorescent display, US Patent N-o US 6, 803, 716 B 1 (2004)

  7. S. Shionoya, W.M. Yen, Phosphors Handbook (Phosphors Research Society, New York, 1998)

    Google Scholar 

  8. C. Granqvist, A. Hultaker, Thin Solid Films 411, 1–5 (2002)

    Article  Google Scholar 

  9. S.L. Wang, D.L. Xia, Glass Enamel 32, 51–54 (2004)

    Google Scholar 

  10. T.P. Niesen, M.R. De Guire, J. Electroceram. 6, 169–207 (2001)

    Article  Google Scholar 

  11. H. Xu, G. Zhu, H. Zhou, J. Am. Ceram. Soc. 88, 986–988 (2005)

    Article  Google Scholar 

  12. Y. Zhang, H. Ago, J. Liu et al., J. Cryst. Growth 264, 363–368 (2004)

    Article  Google Scholar 

  13. K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret, Adv. Funct. Mater. 13, 553–557 (2003)

    Article  Google Scholar 

  14. H.S. Kim, P.D. Byrne, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 130, 12580–12581 (2008)

    Article  Google Scholar 

  15. S. Deki, S. Lizuka, M. Mizuhata, A. Kajinami, J. Electroanal. Chem. 584, 38–43 (2005)

    Article  Google Scholar 

  16. M. Nakata, M. Mizuhata, S. Deki, Electrochem. Acta 53, 179–185 (2007)

    Article  Google Scholar 

  17. R.K. Sonker, A. Sharma, M. Tomar, V. Gupta, B.C. Yadav, Adv. Sci. Lett. 20, 911–916 (2014)

    Article  Google Scholar 

  18. S. Gupta, B.C. Yadav, P.K. Dwivedi, B. Das, Mater. Res. Bull. 48, 3315–3322 (2013)

    Article  Google Scholar 

  19. B.C. Yadav, R. Dixit, S. Singh, Int. J. Sci. Innov. Res. 2(1), 41–57 (2014)

    Google Scholar 

  20. B.C. Yadav, P. Sharma, P.K. Khanna, Bull. Mater. Sci. 34(1), 1–10 (2011)

    Article  Google Scholar 

  21. B.C. Yadav, N. Verma, S. Singh, Opt. Laser Technol. 44, 1681–1688 (2012)

    Article  Google Scholar 

  22. B.C. Yadav, R. Singh, S. Singh, J. Exp. Nanosci. 8, 670–683 (2013)

    Article  Google Scholar 

  23. N.G. Patel, K.K. Makhija, C.J. Panchal, Sens. Actuators B 21, 193–197 (1994)

    Article  Google Scholar 

  24. N.G. Patel, K.K. Makhija, C.J. Panchal, D.B. Dave, V.S. Vaishnav, Sens. Actuators B 23, 49–53 (1995)

    Article  Google Scholar 

  25. N.G. Patel, P.D. Patel, V.S. Vaishnav, Sens. Actuators B 96, 180–189 (2003)

    Article  Google Scholar 

  26. G. Sberveglieri, S. Groppelli, G. Coccori, Sens. Actuators B 15, 235–242 (1988)

    Article  Google Scholar 

  27. G. Sberveglieri, G.P. Benussi, G. Coccoli, S. Groppelli, P. Nelli, Thin Solid Films 186, 349–360 (1990)

    Article  Google Scholar 

  28. A. Galkidas, Z. Marthunas, A. Setkus, Sens. Actuators B 7, 633–636 (1992)

    Article  Google Scholar 

  29. J. Zhang, J.Q. Hu, F.R. Zhu, H. Gong, S.J. Oshea, Sens. Actuators B 87, 159–167 (2002)

    Article  Google Scholar 

  30. K.S. Yoo, S.H. Park, J.H. Kang, Sens. Actuators B 108, 159–164 (2005)

    Article  Google Scholar 

  31. V.S. Vaishnav, P.D. Patel, N.G. Patel, Thin Solid Films 487, 277–282 (2005)

    Article  Google Scholar 

  32. V.S. Vaishnav, P.D. Patel, N.G. Patel, Thin Solid Films 490, 94–100 (2005)

    Article  Google Scholar 

  33. Z. Jiao, M. Wu, J. Gu, X. Sun, Sens. Actuators B 94, 216–221 (2003)

    Article  Google Scholar 

  34. S. Shukla, S. Seal, L. Ludwigb, C. Parish, Sens. Actuators B 97, 256–265 (2004)

    Article  Google Scholar 

  35. B.C. Yadav, R. Singh, S. Singh, P.K. Dwivedi, Int. J. Green Nanotechnol. Mater. Sci. Eng. 4, 1–9 (2012)

    Article  Google Scholar 

  36. S. Singh, A. Singh, B.C. Yadav, P. Tandon, Mater. Sci. Semicond. Process. 23, 122–135 (2014)

    Article  Google Scholar 

  37. T.B.F. Guimaraes, I. Pepeb, A.F. de Silvab, A.S. Mangrichc, J.B. de Andradea, L.A. Silva, J. Alloys Compd. 481, 654–658 (2009)

    Article  Google Scholar 

  38. T. Morimoto, M. Nagao, F. Tokuda, J. Phys. Chem. 73, 243–248 (1969)

    Article  Google Scholar 

  39. J.H. de Bore, The shape of capillaries, the structure and properties of porous materials (Butterworth, London, 1958), pp. 68–94

    Google Scholar 

  40. B.C. Yadav, R. Srivastava, C.D. Dwivedi, P. Pramanik, Sens. Actuators B Chem. 131, 216–222 (2008)

    Article  Google Scholar 

  41. B.C. Yadav, R. Srivastava, C.D. Dwivedi, Philos. Mag. 88(7), 1113–1124 (2008)

    Article  Google Scholar 

  42. T. Yoshioka, N. Mizuno, M. Iwamoto, Chem. Lett. 249–1252 (1991)

  43. G. Korotcenkov, Mater. Sci. Eng. B 139, 1–23 (2007)

    Article  Google Scholar 

  44. K.K. Dey, D. Bhatnagar, A.K. Srivastava, M. Wan, S. Singh, R.R. Yadav, B.C. Yadav, M. Deepa, Nanoscale 7(14), 6159–6172 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author is grateful to Department of Science and Technology, Government of India for SERC-FAST TRACK, Project SR/FTP/PS-21/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, B.C., Agrahari, K., Singh, S. et al. Fabrication and characterization of nanostructured indium tin oxide film and its application as humidity and gas sensors. J Mater Sci: Mater Electron 27, 4172–4179 (2016). https://doi.org/10.1007/s10854-016-4279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4279-x

Keywords

Navigation