Skip to main content
Log in

Solder/substrate interfacial thermal conductance and wetting angles of Bi–Ag solder alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi–Ag lead-free alloys are considered interesting alternatives to Pb-based traditional solders due to compatible melting point and strength. During soldering, the ability of a liquid alloy to flow or spread over the substrate is crucial for the formation of a metallic bond driven by the physicochemical properties of the liquid solder/solid substrate system. In addition, the wettability is intimately associated with the solder/substrate thermal conductance represented by a heat transfer coefficient, hi. In this work, three Bi–Ag alloys (hypoeutectic—1.5 wt%Ag, eutectic—2.5 wt%Ag and hypereutectic—4.0 wt%Ag) were directionally solidified under upward unsteady state heat flow conditions. Both time-dependent hi profiles and wetting behavior represented by contact angles (θ) were determined for the three alloys examined. The dependence of θ on the alloy Ag content is assessed experimentally. Also, thermal readings collected during directional solidification of the Bi 1.5, 2.5 and 4.0 wt% Ag alloys are used with a view to permitting hi versus time (t) profiles to be computed. It is shown that along a first solidification stage (t < 16 s) the hi values followed the trend experimentally observed by the contact angles for the three alloys examined, while for t > 16 s the volumetric expansion of the Bi-rich phase is shown to have a dominant role inducing a sudden increase in hi. For each alloy a couple of time-dependent hi expressions is needed to represent the entire solidification progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Nahavandi, M.A. Azmah Hanim, Z.N. Ismarrubie, A. Hajalilou, R. Rohaizuan, M.Z. Shahrul Fadzli, J. Electron. Mater. 43, 579 (2014)

    Article  Google Scholar 

  2. V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981 (2011)

    Article  Google Scholar 

  3. G. Zeng, S. McDonald, K. Nogita, Microelectron. Reliab. 52, 1306 (2012)

    Article  Google Scholar 

  4. S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, J. Electron. Mater. 38, 266 (2009)

    Article  Google Scholar 

  5. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  6. B. Silva, N. Cheung, A. Garcia, J.E. Spinelli, Mater. Lett. 142, 163 (2015)

    Article  Google Scholar 

  7. B. Silva, N. Cheung, A. Garcia, J.E. Spinelli, J. Alloys Compd. 632, 274 (2015)

    Article  Google Scholar 

  8. J.E. Spinelli, N. Cheung, P.R. Goulart, J.M.V. Quaresma, A. Garcia, Int. J. Therm. Sci. 51, 145 (2012)

    Article  Google Scholar 

  9. W.E. Goodrich, Trans. Faraday Soc. 25, 531 (1929)

    Article  Google Scholar 

  10. N. Cheung, N.S. Santos, J.M.V. Quaresma, G.S. Dulikravich, A. Garcia, Int. J. Heat Mass Transf. 52, 451 (2009)

    Article  Google Scholar 

  11. J. Song, H. Chuang, Z. Wu, J. Electron. Mater. 35, 1041 (2006)

    Article  Google Scholar 

  12. R. Kolenak, M. Chachula, Solder. Surf. Mt. Technol. 25, 68 (2013)

    Article  Google Scholar 

  13. J.H. Kim, S.W. Jeong, H.M. Lee, Mater. Trans. 43, 1873 (2002)

    Article  Google Scholar 

  14. M. Nahavandi, M.A. Azmah Hanim, Z.N. Ismarrubie, A. Hajalilou, R. Rohaizuan, M.Z. Shahrul Fadzli, J. Electron. Mater. 43, 579 (2014)

    Article  Google Scholar 

  15. A.P. Silva, J.E. Spinelli, N. Mangelinck-Noel, A. Garcia, Mater. Des. 31, 4584 (2010)

    Article  Google Scholar 

  16. D.M. Rosa, J.E. Spinelli, I.L. Ferreira, A. Garcia, Metall. Mater. Trans. A 39, 2162 (2008)

    Article  Google Scholar 

  17. N. Cheung, I.L. Ferreira, M.M. Pariona, J.M.V. Quaresma, A. Garcia, Mater. Des. 30, 3592 (2009)

    Article  Google Scholar 

  18. J.K. Brimacombe, I.V. Samarasekera, J.E. Lait, in Continuous Casting, vol. II, ed. by J.K. Brimacombe, I.V. Samarasekera, J.E. Lait (Iron and Steel Society of AIME, Warrendale, 1984), p. 29

    Google Scholar 

  19. M. Krishnan, D.G.R. Sharma, Int. Commun. Heat Mass Transf. 23, 203 (1996)

    Article  Google Scholar 

  20. F. Bertelli, C.H. Silva-Santos, D.J. Bezerra, N. Cheung, A. Garcia, Mater. Manuf. Process. 30, 414 (2015)

    Article  Google Scholar 

  21. J.R. Brown, Foseco Non-Ferrous Foundrysman’s Handbook, 7ª edn. (Butterwort-Heinemann, Oxford, 1999), p. 304

    Google Scholar 

  22. I.V. Savchenko, S.V. Stankus, A.S. Agadzhanov, High Temp. 51, 281 (2013)

    Article  Google Scholar 

  23. J.F. Shackelford, W. Alexander, Materials Science and Engineering Handbook, 6th edn. (CRC Press, Boca Raton, 2001)

    Google Scholar 

  24. J.A. Cahill, A.D. Kirshenbaum, J. Inorg. Nucl. Chem. 25, 502 (1963)

    Article  Google Scholar 

  25. J.A. Cahill, V. Grosse, J. Inorg. Nucl. Chem. 24, 333 (1962)

    Article  Google Scholar 

  26. R.W. Powell, C.Y. Ho, P.E. Liley, in Thermal Conductivity of Selected Materials, National Standard Reference Data Series (Category 5-Thermodynamic and Transport Properties), 1966

  27. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad 26, 273 (2002)

    Article  Google Scholar 

  28. E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, 7º edn. (Butterworth-Heinenmann, Oxford, 1992)

    Google Scholar 

  29. C.A. Santos, J.M.V. Quaresma, A. Garcia, J. Alloys Compd. 319, 174 (2001)

    Article  Google Scholar 

  30. I.L. Ferreira, J.E. Spinelli, J.C. Pires, A. Garcia, Mater. Sci. Eng. A 408, 317 (2005)

    Article  Google Scholar 

  31. P.R. Goulart, K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia, J. Alloys Compd. 470, 589 (2009)

    Article  Google Scholar 

  32. X. Zhang, Z. Yuan, H. Zhao, L. Zang, J. Li, Chin. Sci. Bull. 55, 797 (2010)

    Article  Google Scholar 

  33. T. Ventura, S. Terzi, M. Rappaz, A.K. Dahle, Acta Mater. 59, 1651 (2011)

    Article  Google Scholar 

  34. J.E. Spinelli, B. Silva, N. Cheung, A. Garcia, Mater. Charact. 96, 115 (2014)

    Article  Google Scholar 

  35. J. Song, H. Chuang, T. Wen, Metall. Mater. Trans. A 38, 1371 (2007)

    Article  Google Scholar 

  36. S. Marayoshi, Y. Tomohiro, S. Kunio, N. Hiroshi, T. Tadashi, Trans. JWRI 41, 51 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by FAPESP- São Paulo Research Foundation, Brazil (Grants 2013/08259-3; 2013/13030-5) and CNPq (The Brazilian Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Spinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, B.L., Bertelli, F., Canté, M.V. et al. Solder/substrate interfacial thermal conductance and wetting angles of Bi–Ag solder alloys. J Mater Sci: Mater Electron 27, 1994–2003 (2016). https://doi.org/10.1007/s10854-015-3983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3983-2

Keywords

Navigation