Skip to main content
Log in

Surface and transport properties of liquid Ag–Sn alloys and a case study of Ag–Sn eutectic solder

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This review represents the state of the art in the thermophysical properties of liquid Ag–Sn alloys highlighting the surface and wetting properties of Ag–Sn eutectic solder. It includes an atomistic approach developed within the framework of statistical mechanical theory in conjunction with a Quasi Lattice Theory that, through a rigorous mathematical formalism, provides exact relationships between the properties in terms of classical thermodynamics. The model predicted property values are substantiated by available experimental data. Based on the phase diagram evidence about the existence of ε-Ag3Sn intermetallic compound, the surface (surface tension and surface composition), transport (viscosity and diffusivity) properties and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) have been studied using the Compound Formation Model in a weak interaction approximation and Quasi Chemical Approximation for regular solutions. A case study of Ag–Sn eutectic alloy is presented. Taking into account its importance for design and development of lead free solder alternatives, the literature data on the wettability and the phases formed at the interface between Ag–Sn eutectic alloy and different substrates (Cu, Ni, Au, Pd) have also been analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A, B :

Components of a binary AB alloys

\({A_\mu }{B_\nu }\) :

Cluster in the liquid phase

a i (i = A, B):

Activity of component i

C i (i = A, B):

Composition of component i

C, 1 − C :

Composition of components A and B

C s, 1 − C s :

Surface composition of components A and B

D m :

Inter-diffusion coefficient of a binary alloy

D id :

Intrinsic diffusion coefficient for an ideal binary mixture

D i (i = A, B):

Self-diffusion coefficient of component i

E A :

Activation energy for viscous flow

f, f ij (i, j = A, B):

Bulk concentration functions

\({f^s},f_{{ij}}^{s}(i,j=A,B)\) :

Surface concentration functions

\({G_M}\) :

Gibbs free energy of mixing

\(G_{M}^{{xs}}\) :

Excess Gibbs free energy of mixing

\({H_M}\) :

Enthalpy of mixing

\({k_B}\) :

Boltzmann’s constant

M :

Average atomic weight of a binary alloy

N :

Avogadro’s number

P :

Pressure

p, q :

Surface coordination fractions

R :

Gas constant

\({S_{cc}}(0)\) :

Concentration fluctuations for the bulk phase

\({S_{cc}}(0,id)\) :

Concentration fluctuations for the ideal mixing condition

\(T\) :

Absolute temperature

\({T_m}\) :

Melting temperature of a binary alloy

\({V_i}(i=A,B)\) :

Atomic volume of component i

\(W\) :

Regular solution energy parameter

\(\Delta {W_{ij}}(i,j=A,B)\) :

Order energy parameters for the CFM

\({W_A}\) :

Work of adhesion

\(Z\) :

Coordination number

\(\alpha \) :

Mean surface area of a binary alloy

\({\alpha _1}\) :

Short-range order parameter

\(\beta \) :

Auxiliary variable for the bulk phase description

\({\beta ^s}\) :

Auxiliary variable for the surface phase description

\(\eta \) :

Viscosity of a binary alloy

\({\eta _i}(i=A,B)\) :

Viscosity of component i

\({\eta _0}\) :

Pre-exponential viscosity factor

\(\Delta {\Phi _{ij}}(i,j=A,B)\) :

Concentration functions depending on \(\mu ,\,\nu \)

\(\varphi ,{\varphi _{ij}}(i,j=A,B)\) :

Bulk concentration functions

\({\varphi ^s},\varphi _{{ij}}^{s}(i,j=A,B)\) :

Surface concentration functions

\({\lambda _i}(i=1,2)\) :

Size and shape dependent parameters for viscosity

\(\mu ,\,\nu \) :

Stoichiometric coefficients of an energetically favoured compound

\(\rho \) :

Density of a binary alloy

\({\rho _0}\) :

Density of a binary alloy at its melting temperature

\(\sigma \) :

Surface tension of a binary alloy

\({\sigma _A}\) :

Surface tension of pure component A

\({\sigma _B}\) :

Surface tension of pure component B

\({\sigma _0}\) :

Surface tension of a binary alloy at its melting temperature

\(\theta \) :

Contact angle

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 65 (2000)

    Article  Google Scholar 

  2. K. Suganuma, MRS Bull. 26(11), 880 (2001)

    Article  CAS  Google Scholar 

  3. K.N. Subramanian, J.G. Lee, JOM 55(5), 26 (2003)

    Article  Google Scholar 

  4. The European Action COST 531 project, (2008), http://w3.cost.eu/fileadmin/domain_files/MAT/ Action_531/final_report/final_report-531.pdf. Accessed 20 Jan 2018

  5. C. Schmetterer, A. Mikula, H. Ipser, Database for Properties of Lead-Free Solder Alloys, (2006), http://www.syncpower.com/datasheet/db_pbfree_solder.pdf. Accessed 21 Feb 2016

  6. The Action COST MP0602, (2012), http://www.cost.eu/COST_Actions/mpns/MP0602. Accessed 16 Dec 2017

  7. COST MP0602, in High temperature lead free solders, ed. by A. Kroupa. Handbook of High-Temperature Lead-Free Solders: Group Project Reports, vol 3 (COST Office, Brussels, 2012)

    Google Scholar 

  8. ELFNET COST 531, in Lead free solders, ed. by C. Schmetterer, H. Ipser, J. Pearce. Handbook of Properties of SAC Solders and Joints, vol 2 (COST Office, Brussels, 2008)

    Google Scholar 

  9. D. Giuranno, S. Delsante, G. Borzone, R. Novakovic, J. Alloys Compd. 689, 918 (2016)

    Article  CAS  Google Scholar 

  10. L.C. Prasad, R.N. Singh, V.N. Singh, G.P. Singh, J. Phys. Chem. B 102(6), 921 (1998)

    Article  CAS  Google Scholar 

  11. L.C. Prasad, R.K. Jha, Phys. Status Solidi A 14(202), 2709 (2005)

    Article  CAS  Google Scholar 

  12. L.C. Prasad, A. Mikula, J. Alloys Compd. 314(1–2), 193 (2001)

    Article  CAS  Google Scholar 

  13. E. Ricci, D. Giuranno, I. Grosso, T. Lanata, S. Amore, R. Novakovic, E. Arato, J. Chem. Eng. Data 54(6), 1660 (2009)

    Article  CAS  Google Scholar 

  14. C.-S. Oh, J.-H. Shim, B.-J. Lee, D.N. Lee, J. Alloys Compd. 238, 155 (1996)

    Article  CAS  Google Scholar 

  15. V. Sklyarchuk, Y. Plevachuk, I. Kaban, R. Novakovic, J. Min. Metall. Sect. B 48(3), 443 (2012)

    Article  Google Scholar 

  16. Z. Moser, W. Gąsior, J. Pstruś, S. Ishihara, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Mater. Trans. 45(3), 652 (2004)

    Article  CAS  Google Scholar 

  17. V. Sklyarchuk, Y. Plevachuk, R. Novakovic, I. Kaban, Monatsh. Chem. 143(9), 1249 (2012)

    Article  CAS  Google Scholar 

  18. T.M. Korhonen, J.K. Kivilahti, J. Electron. Mater. 27(3), 149 (1998)

    Article  CAS  Google Scholar 

  19. K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)

    Article  CAS  Google Scholar 

  20. Z. Moser, W. Gąsior, K. Bukat, J. Pstruś, R. Kisiel, I. Ohnuma, K. Ishida, J. Phase Equilib. Diffus. 27, 133 (2006)

    CAS  Google Scholar 

  21. G.Y. Li, B.L. Chen, J.N. Tey, IEEE Trans. Electron. Packag. Manuf. 27(1), 77 (2004)

    Article  CAS  Google Scholar 

  22. A.J. Murphy, J. Inst. Metals 35(1), 107 (1926)

    Google Scholar 

  23. O.J. Kleppa, Acta Metall. 3(3), 255 (1955)

    Article  CAS  Google Scholar 

  24. F.E. Wittig, E. Gehring, Z. Naturforschung A 18(3), 351 (1963) (in German)

    Google Scholar 

  25. K. Itagaki, A. Yazawa, J. Jpn. Inst. Metals Mater. 32(12), 1294 (1968)

    Article  CAS  Google Scholar 

  26. R. Castanet, Y. Claire, M. Laffitte, J. Chim. Phys. 66(7–8), 1276 (1969)

    Article  CAS  Google Scholar 

  27. T. Yamaji, E. Kato, Metall. Mater. Trans. B3, 1002 (1972)

    Article  Google Scholar 

  28. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelly, Selected Values of Thermodynamics Properties of Binary Alloys (ASM International, Metals Park, Ohio, 1973), pp. 103–111

    Google Scholar 

  29. J. Rakotomavo, M. Gaune-Escard, J.P. Bros, P. Gaune, Ber. Bunsenges. Phys. Chem. 88, 663 (1984)

    Article  CAS  Google Scholar 

  30. W. Badawi, M. El-Talbi, A.M. Oun, Bull. Chem. Soc. Jpn 63(6), 1788 (1990)

    Article  CAS  Google Scholar 

  31. I. Karakaya, W.T. Thompson, Bull. Alloys Phase Diagr. 8, 340 (1987)

    Article  CAS  Google Scholar 

  32. P.-Y. Chevalier, Thermochim. Acta 136, 45 (1988)

    Article  CAS  Google Scholar 

  33. U.R. Kattner, W.J. Boettinger, J. Electron. Mater. 23, 603 (1994)

    Article  CAS  Google Scholar 

  34. H. Ohtani, I. Satoh, M. Miyashita, K. Ishida, Mater. Trans. 42, 722 (2001)

    Article  CAS  Google Scholar 

  35. W. Gierlotka, Y.C. Huang, S.W. Chen, Metall. Mater. Trans. A39, 3199 (2008)

    Article  CAS  Google Scholar 

  36. S.-W. Chen, H.-J. Wu, Y.-C. Huang, W. Gierlotka, J. Alloys Compd. 497, 110 (2010)

    Article  CAS  Google Scholar 

  37. H. Okamoto, in Binary Alloy Phase Diagrams, ed. by T.B. By, P.R. Massalski, H. Subramanian, L. Okamoto, Kacprzak (ASM, Metals Park Ohio, 1990), p. 79

    Google Scholar 

  38. N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, 1st edn. (Pergamon, Exeter, 1998)

    Google Scholar 

  39. R.N. Singh, N.H. March, in Intermetallic Compounds, ed. by J.H. Westbrook, R.L. Fleischer. (John Wiley & Sons, New York, 1995), p. 661

    Google Scholar 

  40. R.N. Singh, Can. J. Phys. 65, 309 (1987)

    Article  CAS  Google Scholar 

  41. R. Novakovic, E. Ricci, D. Giuranno, F. Gnecco, Surf. Sci. 515(2–3), 377 (2002)

    Article  CAS  Google Scholar 

  42. R. Novakovic, E. Ricci, J. Alloys Compd. 452(1), 167 (2008)

    Article  CAS  Google Scholar 

  43. S. Steeb, S. Falch, P. Lamparter, Z. Metallkd. 75(8), 599 (1984)

    CAS  Google Scholar 

  44. J. Lee, W. Shimoda, T. Tanaka, Mater. Trans. 45, 2864 (2004)

    Article  CAS  Google Scholar 

  45. I. Lauermann, G. Metzger, F. Sauerwald, Z. Phys. Chem. 216, 42 (1961) (in German)

    CAS  Google Scholar 

  46. P. Fima, Appl. Surf. Sci. 257, 3265 (2011)

    Article  CAS  Google Scholar 

  47. H. Nakajima, Trans. JIM 15, 403 (1976)

    Article  Google Scholar 

  48. R. Novakovic, T. Tanaka, Physica B 371(2), 223 (2006)

    Article  CAS  Google Scholar 

  49. T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals, 1st edn. (Clarendon Press, Oxford, 1993)

    Google Scholar 

  50. V.M. Vozdvizhenski, Prognoz dvoinikh diagram sostoyaniya po statisticheskim kriteriyam (Metallurgiya, Moskva, 1975) (in Russian)

    Google Scholar 

  51. L. Pauling, Nature of the Chemical Bonding (Cornell University Press, Ithaca, 1960)

    Google Scholar 

  52. A.B. Bhatia, D.E. Thornton, Phys. Rev. B2, 3004 (1970)

    Article  Google Scholar 

  53. B.E. Warren, X-ray Diffraction (Addison-Wesley, Reading, 1969)

    Google Scholar 

  54. J.M. Cowley, Phys Rev. 77, 669 (1950)

    Article  CAS  Google Scholar 

  55. R.N. Singh, D.K. Pandey, P.L. Srivastave, Current Trends Phenomena in Metallurgy, Consultants Bureau, New in Physics of Materials (World Scientific, Singapore, 1987), p. 311

    Google Scholar 

  56. E.A. Guggenheim, Mixtures (Oxford University Press, London, 1952)

    Google Scholar 

  57. R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, 1960)

    Google Scholar 

  58. I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Adv. Colloid. Interface Sci. 159, 198 (2010)

    Article  CAS  Google Scholar 

  59. C. Costa, S. Delsante, G. Borzone, D. Zivkovic, R. Novakovic, J. Chem. Thermodyn. 69, 73 (2014)

    Article  CAS  Google Scholar 

  60. A.B. Bhatia, R.N. Singh, Phys. Chem. Liq. 11(4), 285 (1982)

    Article  Google Scholar 

  61. R.N. Singh, F. Sommer, Phys. Chem. Liq. 36(1), 17 (1998)

    Article  CAS  Google Scholar 

  62. R.N. Singh, F. Sommer, Rep. Prog. Phys. 60, 57 (1997)

    Article  CAS  Google Scholar 

  63. M. Polak, L. Rubinovich, Surf. Sci. Rep. 38, 127 (2000)

    Article  CAS  Google Scholar 

  64. B.J. Keene, Int. Mater. Rev. 38(4), 157 (1993)

    Article  CAS  Google Scholar 

  65. K.C. Mills, Y.C. Su, Int. Mater. Rev. 51, 329 (2006)

    Article  CAS  Google Scholar 

  66. R. Novakovic, E. Ricci, D. Giuranno, A. Passerone, Surf. Sci. 576(1–3), 175 (2005)

    Article  CAS  Google Scholar 

  67. R. Novakovic, D. Giuranno, E. Ricci, T. Lanata, Surf. Sci. 602, 1957 (2008)

    Article  CAS  Google Scholar 

  68. M. Kucharski, P. Fima, Monatsh. Chem. 136, 1841 (2005)

    Article  CAS  Google Scholar 

  69. Z. Moser, W. Gąsior, J. Pstruś, J. Phase Equil. 22, 254 (2001)

    Article  CAS  Google Scholar 

  70. T. Gancarz, Z. Moser, W. Gasior, J. Pstrus, H. Henein, Int. J. Thermophys. 32, 1210 (2011)

    Article  CAS  Google Scholar 

  71. J. Lee, W. Shimoda, T. Tanaka, Meas. Sci. Technol. 16, 438 (2005)

    Article  CAS  Google Scholar 

  72. E. Gebhardt, M. Becker, E. Tragner, Z. Metallkd. 44, 379 (1953)

    CAS  Google Scholar 

  73. E.V. Rozhitsina, S. Gruner, I. Kaban, W. Hoyer, V.E. Sidorov, P.S. Popel, Rasplavy 2, 26 (2010) (in Russian)

    Google Scholar 

  74. I. Budai, M.Z. Benkő, G. Kaptay, Mater. Sci. Forum 489, 537–538 (2007)

    Google Scholar 

  75. M. Hirai, Iron Steel Inst. Jpn. Int. 33(2), 251 (1993)

    Article  CAS  Google Scholar 

  76. L. Martin-Garin, R. Martin-Garin, P. Desré, J. Less Common Metals 59, 1 (1978) (in French)

    Article  Google Scholar 

  77. D. Cavasin, M. Anani, G. Rittman, J. Casto, in Proceedings of Electronic Components and Technology Conference ECTC ‘07, 2007, pp. 129–135

  78. F.W. Gayle, G. Becka, J. Badgett, G. Whitten, T.-Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, I. Anderson, J. Foley, A. Gickler, D. Napp, J. Mather, C. Olson, JOM 53(6), 17 (2001)

    Article  CAS  Google Scholar 

  79. K.N. Tu, K. Zeng, Mater. Sci. Eng. R34, 1 (2001)

    Article  CAS  Google Scholar 

  80. P. Šebo, P. Štefanik, Kovove Mater. 43, 202 (2005)

    Google Scholar 

  81. I. Kaban, K. Khalouk, M. Köhler, W. Hoyer, J.-G. Gasser, J. Electron. Mater. 39(1), 70 (2010)

    Article  CAS  Google Scholar 

  82. F. Meydaneri, B. Saatçi, M. Özdemir, Kovove Mater. 51, 173 (2013)

    CAS  Google Scholar 

  83. W. Gąsior, Z. Moser, J. Pstrus´, K. Bukat, R. Kisiel, J. Sitek, J. Phase Equilib. Diffus. 25, 115 (2004)

    Google Scholar 

  84. P.T. Vianco, J.A. Rejent, J. Electron. Mater. 28(10), 1127 (1999)

    Article  CAS  Google Scholar 

  85. N. Eustathopoulos, M.G. Nicholas, B. Drevet, Wettability at High Temperatures, 1st edn. (Pergamon, Amsterdam, 1999)

    Google Scholar 

  86. D.Q. Yu, L. Wang, C.M.L. Wu, C.M.T. Law, J. Alloys Compd. 389, 153 (2005)

    Article  CAS  Google Scholar 

  87. J. Liang, N. Dariavach, P. Callahan, D. Shangguan, Mater. Trans. 47(2), 317 (2006)

    Article  CAS  Google Scholar 

  88. M.F. Arenas, V.-L. Acoff, J. Electron. Mater. 33, 1452 (2004)

    Article  CAS  Google Scholar 

  89. I. Artaki, A.M. Jackson, P.T. Vianco, J. Electron. Mater. 23(6), 757 (1994)

    Article  CAS  Google Scholar 

  90. H. Takao, T. Tsukada, K. Yamada, M. Yamashita, H. Hasegawa, R & D Rev. Toyota CRDL 39(2), 41 (2004)

    CAS  Google Scholar 

  91. W. Gasior, Z. Moser, J. Pstruś, K. Bukat, R. Kisiel, J. Sitek, J. Phase Equilib. Diffus. 25, 115 (2004)

    CAS  Google Scholar 

  92. L. Wang, D.Q. Yu, J. Zhao, M.L. Huang, Mater. Lett. 56, 1039 (2002)

    Article  CAS  Google Scholar 

  93. C.-T. Lin, K.-L. Lin, Appl. Surf. Sci. 214, 243 (2003)

    Article  CAS  Google Scholar 

  94. C.Y. Liu, J. Li, G.J. Vandentop, W.J. Choi, K.N. Tu, J. Electron. Mater. 30(5), 521 (2001)

    Article  CAS  Google Scholar 

  95. L. Zang, H. Yan, Z. Yuan, L. Lu, Adv. Mater. Res. 834–836, 335 (2014)

    Google Scholar 

  96. P.G. Kim, K.N. Tu, Mater. Chem. Phys. 3, 165 (1998)

    Article  Google Scholar 

  97. R. Novakovic, T. Lanata, S. Delsante, G. Borzone, Mater. Chem. Phys. 137, 458 (2012)

    Article  CAS  Google Scholar 

  98. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49(1–2), 1 (2005)

    Article  CAS  Google Scholar 

  99. D. Li, P. Franke, S. Fürtauer, D. Cupid, H. Flandorfer, Intermetallics 34, 148 (2013)

    Article  CAS  Google Scholar 

  100. B.-J. Lee, N.M. Hwang., H.M. Lee, Acta Mater. 45(5), 1867 (1997)

    Article  CAS  Google Scholar 

  101. Z. Mei, A. Sunwoo, J.W. Morris, Metall. Trans. 23A, 857 (1992)

    Article  CAS  Google Scholar 

  102. Y. Guan, N. Moelans, J. Alloys Compd. 635, 289 (2015)

    Article  CAS  Google Scholar 

  103. Y. Yuan, Y. Guan, D. Li, N. Moelans, J. Alloys Compd. 661, 282 (2016)

    Article  CAS  Google Scholar 

  104. A. Yassin, R. Castanet, J. Alloys Compd. 314, 160 (2001)

    Article  CAS  Google Scholar 

  105. A. Yassin, R. Castanet, J. Alloys Compd. 307, 191 (2000)

    Article  CAS  Google Scholar 

  106. B. Schmetterer, H. Flandorfer, K.W. Richter, U. Saeed, M. Kauffman, P. Roussel, H. Ipser, Intermetallics 15, 869 (2007)

    Article  CAS  Google Scholar 

  107. S. Kim, D.C. Johnson, J. Alloys Compd. 392, 105 (2005)

    Article  CAS  Google Scholar 

  108. A. Sharif, M.N. Islam, Y.C. Chan, Mater. Sci. Eng. B 113(3), 184 (2004)

    Article  Google Scholar 

  109. S.-W. Chen, Y.-W. Yen, J. Electron. Mater. 30(9), 1133 (2001)

    Article  CAS  Google Scholar 

  110. S.W. Chen, C.-H. Wang, S.K. Lin, C.N. Chiu, J. Mater. Sci. Mater. Electron. 18, 19 (2007)

    Article  CAS  Google Scholar 

  111. C. Luef, A. Paul, H. Flandorfer, A. Kodentsov, H. Ipser, J. Alloys Compd. 391, 67 (2005)

    Article  CAS  Google Scholar 

  112. H. Ipser, H. Flandorfer, Ch Luef, C. Schmetterer, U. Saeed, J. Mater. Sci. Mater. Electron. 18, 3 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Novakovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novakovic, R., Delsante, S., Lee, J. et al. Surface and transport properties of liquid Ag–Sn alloys and a case study of Ag–Sn eutectic solder. J Mater Sci: Mater Electron 29, 17108–17121 (2018). https://doi.org/10.1007/s10854-018-9897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9897-z

Navigation