Skip to main content
Log in

Effects of annealing temperature on structure and electrical properties of (Na, K)NbO3 thin films grown by RF magnetron sputtering deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, lead-free (Na, K)NbO3 films were successfully deposited by RF magnetron sputtering and subsequent annealing treatment, in which a KNN atmosphere was projected to prevent the alkali metal volatilization. Effects of annealing temperatures on structure and electrical properties of the KNN thin films were investigated systematically. The results show that, with the temperature increasing, the KNN films started crystallization accompanying with volatilization of alkaline elements as well as phase transition. The particle size and surface quality of the film closely depended on annealing temperature and atmosphere. The (100) preferred orientation, large grain size, dense morphology, and annealing atmosphere all benefited the electrical properties of the KNN films. Notablely, the KNN films deposited at 200 °C and subsequent annealed at 650 °C showed a well polarization of 2P r  = 20.8 μC/cm2 and coercive field 2E c of 200 kV/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Chowdhury, J. Bould, M.G.S. Londesborough, Mater. Chem. Phys. 124, 159 (2010)

    Article  Google Scholar 

  2. J. Ryu, J.J. Choi, B.D. Hahn, Appl. Phys. Lett. 90, 152901 (2007)

    Article  Google Scholar 

  3. P. Mahesh, S. Bashaiah, R.K.C. James, J. Am. Ceram. Soc. 98, 1444 (2015)

    Article  Google Scholar 

  4. H. Shiraki, S. Hirose, K. Kageyama, Jpn. J. Appl. Phys. 51, 09LA05 (2012)

    Article  Google Scholar 

  5. Q. Yu, J.F. Li, Y.N. Chen, J. Am. Ceram. Soc. 97, 107 (2014)

    Article  Google Scholar 

  6. S.Y. Lee, J.S. Kim, C.W. Ahn, Thin Solid Films 519, 947 (2010)

    Article  Google Scholar 

  7. G. Li, X.Q. Wu, W. Ren, Thin Solid Films 548, 556 (2013)

    Article  Google Scholar 

  8. P.C. Goh, K. Yao, Z. Chen, Appl. Phys. Lett. 99, 092902 (2011)

    Article  Google Scholar 

  9. F. Fu, B. Shen, J.W. Zhai, J. Alloys Compd. 509, 7130 (2011)

    Article  Google Scholar 

  10. A.F. Solarte, N. Pellegri, O. de Sanctics, J. Sol-Gel Sci. Technol. 66, 488 (2013)

    Article  Google Scholar 

  11. L.Y. Wang, W. Ren, P.C. Goh, Thin Solid Films 537, 65 (2013)

    Article  Google Scholar 

  12. G.F. Han, S. Priya, J. Ryu, Mater. Lett. 65, 278 (2011)

    Article  Google Scholar 

  13. N. Li, W.L. Li, L.D. Wang, J. Alloys Compd. 552, 269 (2013)

    Article  Google Scholar 

  14. N. Li, W.L. Li, L.D. Wang, Mater. Lett. 65, 1010 (2011)

    Article  Google Scholar 

  15. B.Y. Kim, T.G. Seong, I.T. Seo, Acta Mater. 60, 3107 (2012)

    Article  Google Scholar 

  16. P.C. Goh, K. Yao, Z. Chen, Appl. Phys. Lett. 97, 102901 (2010)

    Article  Google Scholar 

  17. K. Tanaka, K. Kakimoto, H. Ohsato, J. Cryst. Growth 294, 209 (2006)

    Article  Google Scholar 

  18. Q.L. Gu, K.J. Zhu, J.S. Liu, RSC Adv. 4(29), 15104 (2014)

    Article  Google Scholar 

  19. F. Fu, B. Shen, J.W. Zhai, Ceram. Int. 38S, S287 (2012)

    Article  Google Scholar 

  20. D.Y. Wang, D.M. Lin, K.W. Kwok, Appl. Phys. Lett. 98, 022902 (2011)

    Article  Google Scholar 

  21. L.Y. Wang, K. Yao, W. Ren, Appl. Phys. Lett. 93, 092903 (2008)

    Article  Google Scholar 

  22. A. Tian, W. Ren, L.Y. Wang, Appl. Surf. Sci. 258, 2674 (2012)

    Article  Google Scholar 

  23. X. Yan, W. Ren, X.Q. Wu, J. Alloys Compd. 508, 129 (2010)

    Article  Google Scholar 

  24. P.C. Goh, K. Yao, Z. Chen, J. Am. Ceram. Soc. 92, 1322 (2009)

    Article  Google Scholar 

  25. S. Wiegand, S. Flege, W. Ensinger, J. Sol-Gel Sci. Technol. 67, 654 (2013)

    Article  Google Scholar 

  26. T. Li, G.S. Wang, K. Li, Ceram. Int. 40, 1195 (2014)

    Article  Google Scholar 

  27. T. Lu, K.J. Zhu, J.S. Liu, J. Mater. Sci. Mater. Electron. 25, 1112 (2014)

    Article  Google Scholar 

  28. G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619 (1985)

    Article  Google Scholar 

  29. C.W. Ahn, S.Y. Lee, H.J. Lee, J. Phys. D Appl. Phys. 42, 215304 (2009)

    Article  Google Scholar 

  30. C.W. Ahn, E.D. Jeong, S.Y. Lee, Appl. Phys. Lett. 93, 212905 (2008)

    Article  Google Scholar 

  31. C.R. Cho, A. Grishin, J. Appl. Phys. 87, 4439 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Jiangsu Postdoctoral Scientific Research Fund (1202016C) and the National Nature Science Foundation of China (51172108), A project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liu, J., Li, Z. et al. Effects of annealing temperature on structure and electrical properties of (Na, K)NbO3 thin films grown by RF magnetron sputtering deposition. J Mater Sci: Mater Electron 27, 899–905 (2016). https://doi.org/10.1007/s10854-015-3832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3832-3

Keywords

Navigation