Skip to main content
Log in

Ag and Cu whisker formation in Ag–Cu–Te alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Long Ag and Cu whiskers are found in Ag–Cu–Te alloys annealed at 400 and 600 °C. Depending upon the nominal compositions of the alloys, there are three kinds of whiskers, Ag, Cu, and Ag + Cu whiskers. For the first time, two different kinds of whiskers grown simultaneously from the same substrate are observed. These whiskers are all polycrystalline, and the grain sizes of the Ag are larger than those of Cu. As indicated by their continuous connection with the substrate, many shear bands in the whiskers, and low-angle grain boundaries piling up near the grain boundaries, it is confirmed that the whiskers grow not from the gas phase, but within the solid state, pushed outward by stress. The Ag–Cu–Te liquidus projection is calculated by the Calphad method. It is found that the compositional regimes of whisker growth overlap with the regions of the liquid miscibility gaps. When alloys solidify through a liquid miscibility gap, two regions of different compositions would form. The stress developed following solidification, originating from these two regions of different compositions, is the main driving force behind whisker formation. The rapid growth rates of the whiskers are a result of the rapid liquid-like diffusion behaviors of the Ag and Cu atoms in the Ag–Cu–Te alloys of the cage-like structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wu R, Li Z, Li Y, You L, Luo P, Yang J, Luo J (2019) Synergistic optimization of thermoelectric performance in p-type Ag2Te through Cu substitution. J Mater 5:489–495

    Google Scholar 

  2. Zhao K, Liu K, Yue Z, Wang Y, Song Q, Li J, Guan M, Xu Q, Qiu P, Zhu H, Chen L, Shi X (2019) Are Cu2Te-based compounds excellent thermoelectric materials? Adv Mater 31:1903480

    Article  CAS  Google Scholar 

  3. Ballikaya S, Chi H, Salvadorc JR, Uher C (2013) Thermoelectric properties of Ag-doped Cu2Se and Cu2Te. J Mater Chem A 1:12478–12484

    Article  CAS  Google Scholar 

  4. Capps J, Drymiotis F, Lindsey S, Tritt TM (2010) Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te. Philos Mag Lett 90:677–681

    Article  CAS  Google Scholar 

  5. Agayev FG, Trukhanov SV, Trukhanov AV, Jabarov SH, Ayyubova GS, Mirzayev MN, Trukhanova EL, Vinnik DA, Kozlovskiy AL, Zdorovets MV, Sombra ASB, Zhou D, Jotania RB, Singh C, Trukhanov AV (2022) Study of structural features and thermal properties of barium hexaferrite upon indium doping. J Therm Anal Calorim 147:14107–14114

    Article  CAS  Google Scholar 

  6. Manzoor S, Alharbi FF, Al-Sehemi AG, Ashiq MN, Abid AG, Khosa RY, Ansari MN, Trukhanov S, Tishkevich D, Trukhanov A (2023) Facile synthesis of CeSe2@CNs nanostructure for enhanced water oxidation. Mater Chem Phys 301:127529

    Article  CAS  Google Scholar 

  7. Trukhanov SV, Trukhanov AV, Vasiliev AN, Balagurov AM, Szymczak H (2011) Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. J Exp Theor Phys 113:819–825

    Article  CAS  Google Scholar 

  8. Schwartz M (2003) Brazing. ASM International

  9. Luo HT, Chen SW (1996) Phase equilibria of the ternary Ag-Cu-Ni system and the interfacial reactions in the Ag-Cu/Ni couples. J Mater Sci 31:5059–5067. https://doi.org/10.1007/BF00355906

    Article  CAS  Google Scholar 

  10. Chang YA, Chen S, Zhang F, Yan X, Xie F, Schmid-Fetzer R, Oates WA (2004) Phase diagram calculation: past, present and future. Prog Mater Sci 49(3–4):313–345

    Article  CAS  Google Scholar 

  11. Chen SW, Wang CH, Lin SK, Chiu CN (2007) Phase diagrams of Pb-free solders and their related materials systems. J Mater Sci 18:19–37. https://doi.org/10.1007/s10854-006-9010-x

    Article  CAS  Google Scholar 

  12. Zhang PG, Zhang YM, Sun ZM (2015) Spontaneous growth of metal whiskers on surfaces of solids: a review. J Mater Sci Technol 31(7):675–698

    Article  Google Scholar 

  13. Bunyan D, Ashworth MA, Wilcox GD, Higginson RL, Heath RJ, Liu C (2014) Tin whisker growth from electroplated finishes - a review. Trans Inst Met Finish 91(5):249–259

    Article  Google Scholar 

  14. Chason E, Jadhav N, Pei F, Buchovecky E, Bower A (2013) Growth of whiskers from Sn surfaces: driving forces and growth mechanisms. Prog Surf Sci 88(2):103–131

    Article  CAS  Google Scholar 

  15. Smetana J (2007) Theory of tin whisker growth: the end game. IEEE Trans Electron Packag Manuf 30(1):11–22

    Article  CAS  Google Scholar 

  16. Lin SK, Yorikado Y, Jiang J, Kim K-S, Suganuma K, Chen S-W, Tsujimoto M, Yanada I (2007) Microstructure development of mechanical-deformation Induced Sn whiskers. J Electron Mater 36(12):1732–1734

    Article  CAS  Google Scholar 

  17. Osenbach JW, DeLucca JM, Potteiger BD, Amin A, Baiocchi F (2007) Sn-whiskers: truths and myths. J Mater Sci: Mater Electron 18:283–305

    CAS  Google Scholar 

  18. Tu KN, Li JCM (2005) Spontaneous whisker growth on lead-free solder finishes. Mater Sci Eng Struct Mater Prop Microstruct Process 409(1–2):131–139

    Article  Google Scholar 

  19. Hsu TY, Chang JY, Chang HM, Ouyang FY (2016) Electromigration induced spontaneous Ag whisker growth in fine Ag-alloy bonding interconnects: novel polarity effect. Mater Lett 182(1):55–58

    Article  CAS  Google Scholar 

  20. Brown DR, Day T, Caillat T, Snyder GJ (2013) Chemical stability of (Ag, Cu)2Se: a historical overview. J Electron Mater 42(1):2014–2019

    Article  CAS  Google Scholar 

  21. Smetana J (2007) Theory of tin whisker growth: the end game. Inst Electr Electron Eng 30(1):11–22

    CAS  Google Scholar 

  22. Brown DR, Day T, Caillat T, Snyder GJ (2013) Chemical stability of (Ag, Cu)2Se: a historical overview. J Electron Mater 42(7):2014–2019

    Article  CAS  Google Scholar 

  23. Chen SW, Lin JY, Hsu CM, Chang JS, Duh JG, Wang CH (2013) Ag whisker formation in Ag-In-Se alloys. Metall Mater Trans A 44:5281–5283

    Article  CAS  Google Scholar 

  24. Blanton T, Misture S, Dontula N, Zdzieszynski S (2011) In situ high-temperature X-ray diffraction characterization of silver sulfide, Ag2S. Powder Diffr 26(2):114–118

    Article  CAS  Google Scholar 

  25. Ohachi T, Taniguchi I (1974) The growth and morphology of silver whiskers. J Cryst Growth 24:362–366

    Article  Google Scholar 

  26. Corish J, O’briain CD (1972) The growth and dissolution of silver whiskers. J Cryst Growth 13:62–67

    Article  Google Scholar 

  27. Ohachi T, Ichiro T (1969) Growth control of silver whiskers on α-Ag2S, α-Ag2Se and α-Ag2Te. Jpn J Appl Phys 8(8):1062–1063

    Article  Google Scholar 

  28. Dennler G, Chmielowski R, Jacob S, Capet F, Roussel P, Zastrow S, Nielsch K, Opahle I, Madsen GKH (2014) Are binary copper sulfides/selenides really new and promising thermoelectric materials? Adv Energy Mater 4(9):1301581

    Article  Google Scholar 

  29. Kittaka S, Kishi K (1965) Growth of copper whiskers from cupric oxide. Jpn J Appl Phys 4(9):661–666

    Article  CAS  Google Scholar 

  30. van der Meulen PA, Lindstrom HV (1956) A study of whisker formation in the electrodeposition of copper. J Electrochem Soc 103(7):390–395

    Article  Google Scholar 

  31. Brenner SS (1956) The growth of whiskers by the reduction of metal salts. Acta Metall 4(1):62–74

    Article  CAS  Google Scholar 

  32. Henaish AM, Darwish MA, Hemeda OM, Weinstein IA, Soliman TS, Trukhanov AV, Trukhanov SV, Zhou D, Dorgham AM (2023) Structure and optoelectronic properties of ferroelectric PVA-PZT nanocomposites. Opt Mater 138:113402

    Article  CAS  Google Scholar 

  33. Alshammari DA, El-Gawad HHA, Abdullah M, Manzoor S, El-Bahy ZM, Alzahrani HA, Raza N, Henaish AMA, Trukhanov S, Sayyed MI, Tishkevich D, Trukhanov A (2024) CuTe supported on graphitic carbon nitride nanocomposite as an effective electrocatalyst for oxidation of water in basic media. J Electroanal Chem 953:136200

    Article  Google Scholar 

  34. Zhivulin VE, Trofimov EA, Zaitseva OV, Sherstyuk DP, Cherkasova NA, Taskaev SV, Vinnik DA, Alekhina YA, Perov NS, Naidu KCB, Elsaeedy HI, Khandaker MU, Tishkevich DI, Zubar TI, Trukhanov AV, Trukhanov SV (2023) Preparation, phase stability and magnetization behavior of high entropy hexaferrites. iScience 26:107077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grabchikov SS, Trukhanov AV, Trukhanov SV, Kazakevich IS, Solobay AA, Erofeenko VT, Vasilenkov NA, Volkova OS, Shakin A (2016) Effectiveness of the magnetostatic shielding by the cylindrical shells. J Magn Magn Mater 398:49–53

    Article  CAS  Google Scholar 

  36. Harris GB (1952) X. Quantitative measurement of preferred orientation in rolled uranium bars. London Edinburgh Dublin Philos Mag J Sci 43:113–123

    Article  Google Scholar 

  37. Pandey A, Dalal S, Dutta S, Dixit A (2021) Structural characterization of polycrystalline thin films by X-ray diffraction techniques. J Mater Sci: Mater Electron 32:1341–1368

    CAS  Google Scholar 

  38. Trukhanov SV, Trukhanov AV, Szymczak H, Szymczak R, Baran M (2006) Thermal stability of A-site ordered PrBaMn2O6 manganites. J Phys Chem Solids 67:675–681

    Article  CAS  Google Scholar 

  39. Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ (2012) Copper ion liquid-like thermoelectrics. Nat Mater 11:422–425

    Article  PubMed  Google Scholar 

  40. Qiu Y, Ye J, Liu Y, Yang X (2017) Facile rapid synthesis of a nanocrystalline Cu2Te multi-phase transition material and its thermoelectric performance. R Soc Chem 7:22558–22566

    CAS  Google Scholar 

  41. Aniya M, Okazaki H, Kobayashi M (1990) Liquid-like model for the ultrasonic attenuation in superionic conductors: application to α-Ag2Te. J Phys Soc 59:180–190

    Article  CAS  Google Scholar 

  42. Zhu W, Huang Z, Chu M, Li S, Zhang Y, Ao W, Wang R, Luo J, Liu F, Xiao Y, Pan F (2020) Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials. Chem Eng J 386:123917

    Article  CAS  Google Scholar 

  43. Zhao K, Qiu P, Shi W, Chen L (2020) Recent advances in liquid-like thermoelectric materials. Adv Funct Mater 30:1903867

    Article  CAS  Google Scholar 

  44. Gierlotka W (2009) Thermodynamic assessment of the Ag–Te binary system. J Alloy Compd 485:231–235

    Article  CAS  Google Scholar 

  45. Huang D, Han R, Wang Y, Ye T (2021) The Cu–Te system: phase relations determination and thermodynamic assessment. J Alloy Compd 855:157373

    Article  CAS  Google Scholar 

  46. Wang CP, Liu XJ, Ohnuma I, Kainuma R, Ishida K (2002) Formation of immiscible alloy powders with egg-type microstructure. Science 297:990–993

    Article  CAS  PubMed  Google Scholar 

  47. Chen SW, Yen YW (1999) Interfacial reactions in Ag–Sn/Cu couples. J Electron Mater 28:1203–1208

    Article  CAS  Google Scholar 

  48. Legendre B, Souleau C, Hangcheng C (1984) Phase diagram of the ternary system Cu–Ag–Te 1. The subternary Cu–Cu2Te–Ag2Te–Ag. Bull La Soc Chim 9:273

    Google Scholar 

  49. Chang YA, Goldberg D, Neumann JP (1977) Phase diagrams and thermodynamic properties of ternary copper-silver systems. J Phys Chem Ref Data 6:621–674

    Article  CAS  Google Scholar 

  50. Nuriev IR, Salaev EY, Nabiev RN (1983) Investigation of phases in the Ag2Te–Cu2Te system. Izv Akad Nauk SSSR Neorg Mater 19:1074–1076

    CAS  Google Scholar 

  51. Zhao Z, Wang S, Zhang H, Mao WL (2013) Pressure-induced structural transitions and metallization in Ag2Te. Phys Rev B 88:024120

    Article  Google Scholar 

  52. Huang D, Han R, Wang Y, Ye T (2021) The Cu-Te system: phase relations determination and thermodynamic assessment. J Alloy Compd 855:157373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of MA-tek (2021-T-012) and National Science and Technology Council of Taiwan (MOST 111-2221-E-007-014-MY3) and (NSTC 111-2634-F-007-008).

Author information

Authors and Affiliations

Authors

Contributions

Sinn-wen Chen helped in conceptualization. Sinn-wen Chen, Pin-Shuo Huang, and Jhe-Yu Lin helped in methodology. Pin-shuo Huang, Yung-Chun Tsai, Yohanes Hutabalian, and Jhe-Yu Lin helped in validation. Sinn-wen Chen, Pin-Shuo Huang, Pin-Shuo Huang, and Yohanes Hutabalian helped in formal analysis. Pin-Shuo Huang and Yohanes Hutabalian worked in investigation. Pin-Shuo Huang, Yung-Chun Tsai, and Yohanes Hutabalian helped in data curation. Sinn-wen Chen and Pin-Shuo Huang contributed to writing. Pin-Shuo Huang and Yung-Chun Tsai helped in visualization. Sinn-wen Chen worked in supervision. Sinn-wen Chen worked in project administration. Sinn-wen Chen helped in funding acquisition.

Corresponding author

Correspondence to Sinn-wen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sw., Huang, Ps., Tsai, YC. et al. Ag and Cu whisker formation in Ag–Cu–Te alloys. J Mater Sci 59, 9091–9106 (2024). https://doi.org/10.1007/s10853-024-09714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09714-1

Navigation