Skip to main content

Advertisement

Log in

Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic x-rays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lead chloride, bismuth oxide and tungsten oxide filled epoxy composites with different weight fractions were fabricated to investigate their x-ray transmission characteristics in the x-ray diagnostic imaging energy range (40–127 kV) by using a conventional laboratory x-ray machine. Characterizations of the microstructure properties of the synthesized composites were performed using synchrotron radiation diffraction, backscattered electron imaging microscopy, three-point bend test and Rockwell hardness test. As expected, the x-ray transmission was decreased by the increment of the filler loading. Meanwhile, the flexural modulus and hardness of the composites were increased through an increase in filler loading. However, the flexural strength showed a marked decrease with the increment of filler loading (≥30 wt%). Some agglomerations were observed for the composites having ≥50 wt% of filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Holmes-Siedle, L. Adams, Hand Book of Radiation Effects, 2nd edn. (Oxford University Press, London, 2002)

    Google Scholar 

  2. F. El Haber, G. Froyer, J. Univ. Chem. Technol. Metall. 43, 283 (2008)

    Google Scholar 

  3. E. Schmid, W. Panzer, H. Schlattl, H. Eder, J. Radiol. Prot. 32, 129 (2012)

    Article  Google Scholar 

  4. D.G. Sutton, C.J. Martin, D. Peet, J.R. Williams, J. Radiol. Prot. 32, 117 (2012)

    Article  Google Scholar 

  5. P. Sprawls, The Physical Principles of Medical Imaging (Aspen Publishers, Gaithersburg, 1993)

    Google Scholar 

  6. S. Arjula, A. Harsha, M. Ghosh, J. Mater. Sci. 43, 1757 (2008)

    Article  ADS  Google Scholar 

  7. K. Dworecki, M. Drabik, T. Hasegawa, S. Wa̧sik, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 225, 483 (2004)

    Article  ADS  Google Scholar 

  8. G.K. Hubler, Nucl. Instrum. Methods Phys. Res. 191, 101 (1981)

    Article  ADS  Google Scholar 

  9. M.R.F. Soares, P. Alegaonkar, M. Behar, D. Fink, M. Müller, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 218, 300 (2004)

    Article  ADS  Google Scholar 

  10. J.K. Kim, R.E. Robertson, J. Mater. Sci. 27, 161 (1992)

    Article  ADS  Google Scholar 

  11. S. Daren, Polymer versus glass, POLYMICRO newsletter, http://www.polymicro-cc.com. Accessed 16 July 2010

  12. E.H. Lee, G.R. Rao, M.B. Lewis, L. Mansur K, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 74, 326 (1993)

    Article  ADS  Google Scholar 

  13. A.G. Andreopoulos, G.C. Papanicolaou, J. Mater. Sci. 22, 3417 (1987)

    Article  ADS  Google Scholar 

  14. V. Harish, N. Nagaiah, T.N. Prabhu, K.T. Varughese, J. Appl. Polym. Sci. 112, 1503 (2009)

    Article  Google Scholar 

  15. M.M. Abdel-Aziz, A.S. Badran, A.A. Abdel-Hakem, F.M. Helaly, A.B. Moustafa, J. Appl. Polym. Sci. 42, 1073 (1991)

    Article  Google Scholar 

  16. V.I. Pavlenko, V.M. Lipkanskii, P.N. Yastrebinskii, J. Eng. Phys. Thermophys. 77, 11 (2004)

    Article  Google Scholar 

  17. W. Osei-Mensah, J.J. Fletcher, K.A. Danso, Int. J. Sci. Technol. 2, 455 (2012)

    Google Scholar 

  18. L. Liu, L. He, C. Yang, W. Zhang, R.-G. Jin, L.-Q. Zhang, Macromol. Rapid Commun. 25, 1197 (2004)

    Article  Google Scholar 

  19. Premac lead acrylic, part of the Wardray Premise total radiation shielding package, Wardray Premise Ltd., http://wardray-premise.com/structural/materials/premac.html. Accessed 4 May 2011

  20. L.S. Limited (ed.), Radiation Safety & Consumable Products. (Lablogic, Sheffield, 2009). http://www.lablogic.com/moreinfo/PDF/consumables/lablogic_consumables_brochure.pdf. Accessed 9 June 2010.

    Google Scholar 

  21. N.Z. Noor Azman, S.A. Siddiqui, R. Hart, I.M. Low, Appl. Radiat. Isot. 71, 62 (2013)

    Article  Google Scholar 

  22. Australian Standards 1774.5, Method 5. The determination of density, porosity and water absorption (1989)

  23. ASTM, Annual Book of ASTM Standards, vol. 08.01 (2005)

    Google Scholar 

  24. Data sheet lead glass (X-ray protection), UQG optics, http://www.uqgoptics.com/pdf/Lead%20Glass.pdf. Accessed 9 November 2012

Download references

Acknowledgements

The collection of synchrotron powder diffraction data was funded by the Australian Synchrotron (PD5075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to It M. Low.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noor Azman, N.Z., Siddiqui, S.A. & Low, I.M. Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic x-rays. Appl. Phys. A 110, 137–144 (2013). https://doi.org/10.1007/s00339-012-7464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7464-7

Keywords

Navigation