Skip to main content
Log in

Textile waste-based cellulose composites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to increased environmental awareness, the depletion of fossil fuels, and expanding ecological concerns, today’s society has a larger need for environmentally friendly materials. The idea of sustainable development of environmental material resources with enhanced economic activities was born from the rise in ecological consciousness. The textile industry generates enormous amounts of cotton waste. The environmental impact of disposing of this cotton waste makes it difficult for the textile sector to dispose of the vast amounts of produced cotton waste. As a result, all-cellulose composites (ACCs) have piqued the interest of researchers in recent years. All-cellulose composites are cellulose-based mono-component cellulose composites in which the reinforcing phase is typically composed of high-strength cellulose fibres, and the matrix is composed of regenerated cellulose. This composite type is distinguished by its exceptional interfacial compatibility and biodegradability due to the matrix and reinforcing phase having common cellulosic compositions. ACCs will become a more alluring option as enterprises prioritize sustainability and environmental responsibility because they can be recycled and reused rapidly and simply. This will contribute to less waste and enhance the overall sustainability of our society. This review paper discusses various methods to develop ACCs, textile waste-based thermoset and thermoplastic composites and textile waste-based cellulose composites (TWCCs). This review paper emphasizes approaches to develop TWCCs and the challenges and opportunities in TWCCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Kamble Z, Behera BK (2021) Upcycling textile wastes: challenges and innovations. Text Prog 53:65–122. https://doi.org/10.1080/00405167.2021.1986965

    Article  Google Scholar 

  2. Shishoo R (2012) Introduction: trends in the global textile industry. In: the global textile and clothing industry: technological advances and future challenges. Woodhead Publishing Limited, pp 1–7

  3. Pensupa N, Leu S-YY, Hu Y et al (2017) Recent trends in sustainable textile waste recycling methods: current situation and future prospects. Top Curr Chem 375:76. https://doi.org/10.1007/s41061-017-0165-0

    Article  CAS  Google Scholar 

  4. Sharma M, Dhiman R (2016) Determinants affecting Indian textile exports: a review. Biz Bytes J Manag Technol 6:193–199

    Google Scholar 

  5. Kamble Z, Behera BK (2021) Upcycling textile waste towards green nanocomposites. Integrated approaches towards solid waste management. Springer International Publishing, Cham, pp 189–201

    Chapter  Google Scholar 

  6. Mishra S, Rath CC, Das AP (2019) Marine microfiber pollution: a review on present status and future challenges. Mar Pollut Bull 140:188–197. https://doi.org/10.1016/j.marpolbul.2019.01.039

    Article  CAS  PubMed  Google Scholar 

  7. Kamble Z, Behera BK (2021) Fabrication and performance evaluation of waste cotton and polyester fiber-reinforced green composites for building and construction applications. Polym Compos 42:3025–3037. https://doi.org/10.1002/pc.26036

    Article  CAS  Google Scholar 

  8. Kamble Z, Behera BK, Mishra R, Behera PK (2021) Influence of cellulosic and non-cellulosic particle fillers on mechanical, dynamic mechanical, and thermogravimetric properties of waste cotton fibre reinforced green composites. Compos Part B Eng 207:1–10. https://doi.org/10.1016/j.compositesb.2020.108595

    Article  CAS  Google Scholar 

  9. Subramanian K, Chopra SS, Cakin E et al (2020) Environmental life cycle assessment of textile bio-recycling – valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resour Conserv Recycl 161:104989. https://doi.org/10.1016/j.resconrec.2020.104989

    Article  Google Scholar 

  10. Sulochani RMN, Jayasinghe RA, Fernando C, et al (2023) Life cycle assessment (LCA) of a textile waste thermoplastic composite material for wall partitioning applications. In: international conference on sustainable built environment. pp 441–450

  11. Zhang J, Chevali VS, Wang H, Wang C-H (2020) Current status of carbon fibre and carbon fibre composites recycling. Compos Part B Eng 193:108053. https://doi.org/10.1016/j.compositesb.2020.108053

    Article  CAS  Google Scholar 

  12. Meng F, McKechnie J, Turner TA, Pickering SJ (2017) Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres. Compos Part A Appl Sci Manuf 100:206–214. https://doi.org/10.1016/j.compositesa.2017.05.008

    Article  CAS  Google Scholar 

  13. Meng F, Olivetti EA, Zhao Y et al (2018) Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options. ACS Sustain Chem Eng 6:9854–9865. https://doi.org/10.1021/acssuschemeng.8b01026

    Article  CAS  Google Scholar 

  14. Evens T, Bex G-J, Yigit M et al (2019) The influence of mechanical recycling on properties in injection molding of fiber-reinforced polypropylene. Int Polym Process 34:398–407. https://doi.org/10.3139/217.3770

    Article  CAS  Google Scholar 

  15. Li J, Nawaz H, Wu J et al (2018) All-cellulose composites based on the self-reinforced effect. Compos Commun 9:42–53. https://doi.org/10.1016/j.coco.2018.04.008

    Article  CAS  Google Scholar 

  16. Suriani MJ, Ilyas RA, Zuhri MYM et al (2021) Critical review of natural fiber reinforced hybrid composites: processing, properties. Appl Cost Polym (Basel) 13:3514. https://doi.org/10.3390/polym13203514

    Article  CAS  Google Scholar 

  17. Yadav S, Kamble Z, Behera BK (2022) Advances in multifunctional textile structural power composites: a review. J Mater Sci 57:17105–17138. https://doi.org/10.1007/s10853-022-07713-8

    Article  CAS  Google Scholar 

  18. Sinha AK, Bhattacharya S, Narang HK (2021) Abaca fibre reinforced polymer composites: a review. J Mater Sci 56:4569–4587. https://doi.org/10.1007/s10853-020-05572-9

    Article  Google Scholar 

  19. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. https://doi.org/10.1021/ma049300h

    Article  CAS  Google Scholar 

  20. Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromol 8:2712–2716. https://doi.org/10.1021/bm0703416

    Article  CAS  Google Scholar 

  21. Baghaei B, Skrifvars M (2020) All-cellulose composites: a review of recent studies on structure. Propert Appl Mol 25:2836. https://doi.org/10.3390/molecules25122836

    Article  CAS  Google Scholar 

  22. Kalka S, Huber T, Steinberg J et al (2014) Biodegradability of all-cellulose composite laminates. Compos Part A Appl Sci Manuf 59:37–44. https://doi.org/10.1016/j.compositesa.2013.12.012

    Article  CAS  Google Scholar 

  23. Zailuddin NLI, Osman AF, Rahman R (2020) Morphology, mechanical properties, and biodegradability of <scp>all-cellulose</scp> composite films from oil palm empty fruit bunch. SPE Polym 1:4–14. https://doi.org/10.1002/pls2.10008

    Article  Google Scholar 

  24. Cao J, Sun X, Lu C et al (2016) Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites. Carbohydr Polym 149:60–67. https://doi.org/10.1016/j.carbpol.2016.04.086

    Article  CAS  PubMed  Google Scholar 

  25. Baghaei B, Compiet S, Skrifvars M (2020) Mechanical properties of all-cellulose composites from end-of-life textiles. J Polym Res 27:1–9. https://doi.org/10.1007/s10965-020-02214-1

    Article  CAS  Google Scholar 

  26. Baghaei B, Johansson B, Skrifvars M, Kadi N (2022) All-cellulose composites properties from pre-and post-consumer denim wastes: comparative study. J Compos Sci 6:130. https://doi.org/10.3390/JCS6050130

    Article  CAS  Google Scholar 

  27. Temmink R, Baghaei B, Skrifvars M (2018) Development of biocomposites from denim waste and thermoset bio-resins for structural applications. Compos Part A Appl Sci Manuf 106:59–69. https://doi.org/10.1016/j.compositesa.2017.12.011

    Article  CAS  Google Scholar 

  28. de Oliveira Neto GC, Teixeira MM, Souza GLV et al (2022) Assessment of the eco-efficiency of the circular economy in the recovery of cellulose from the shredding of textile waste. Polymers (Basel) 14:1317. https://doi.org/10.3390/polym14071317

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Hu Y, Du C, Lin CSK (2019) Recovery of glucose and polyester from textile waste by enzymatic hydrolysis. Waste Biom Valorizat 10:3763–3772. https://doi.org/10.1007/s12649-018-0483-7

    Article  CAS  Google Scholar 

  30. Fitzgerald A, Proud W, Kandemir A et al (2021) A life cycle engineering perspective on biocomposites as a solution for a sustainable recovery. Sustainability 13:1160. https://doi.org/10.3390/su13031160

    Article  CAS  Google Scholar 

  31. Zou Y, Reddy N, Yang Y (2011) Reusing polyester/cotton blend fabrics for composites. Compos Part B Eng 42:763–770. https://doi.org/10.1016/j.compositesb.2011.01.022

    Article  CAS  Google Scholar 

  32. Taşdemir M, Koçak D, Usta I et al (2007) Properties of polypropylene composite produced with silk and cotton fiber waste as reinforcement. Int J Polym Mater Polym Biomater 56:1155–1165. https://doi.org/10.1080/00914030701323752

    Article  CAS  Google Scholar 

  33. Kamble Z, Behera BK, Kimura T, Haruhiro I (2022) Development and characterization of thermoset nanocomposites reinforced with cotton fibres recovered from textile waste. J Ind Text 51:2026S-2052S. https://doi.org/10.1177/1528083720913535

    Article  CAS  Google Scholar 

  34. Halimi MT, Ben HM, Sakli F (2008) Cotton waste recycling: Quantitative and qualitative assessment. Resour Conserv Recycl 52:785–791. https://doi.org/10.1016/j.resconrec.2007.11.009

    Article  Google Scholar 

  35. Kamble Z, Behera BK (2021) Mechanical and thermogravimetric properties of PP based thermoplastic composites reinforced with cotton and polyester waste under dry and wet conditions. J Nat Fibers 19:1–14. https://doi.org/10.1080/15440478.2021.2002775

    Article  CAS  Google Scholar 

  36. Kamble Z, Behera BK (2020) Mechanical properties and water absorption characteristics of composites reinforced with cotton fibres recovered from textile waste. J Eng Fiber Fabr 15:155892502090153. https://doi.org/10.1177/1558925020901530

    Article  CAS  Google Scholar 

  37. Prado KS, Gonzales D, Spinacé MAS (2019) Recycling of viscose yarn waste through one-step extraction of nanocellulose. Int J Biol Macromol 136:729–737. https://doi.org/10.1016/j.ijbiomac.2019.06.124

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, Yao ZJ, Zhou J, Zhang Y (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952. https://doi.org/10.1016/j.carbpol.2016.10.044

    Article  CAS  PubMed  Google Scholar 

  39. Yousef S, Tatariants M, Tichonovas M et al (2019) A new strategy for using textile waste as a sustainable source of recovered cotton. Resour Conserv Recycl 145:359–369. https://doi.org/10.1016/j.resconrec.2019.02.031

    Article  Google Scholar 

  40. Yousef S, Tatariants M, Tichonovas M et al (2020) Sustainable green technology for recovery of cotton fibers and polyester from textile waste. J Clean Prod 254:1–11. https://doi.org/10.1016/j.jclepro.2020.120078

    Article  CAS  Google Scholar 

  41. Haule LV, Carr CM, Rigout M (2016) Preparation and physical properties of regenerated cellulose fibres from cotton waste garments. J Clean Prod. https://doi.org/10.1016/j.jclepro.2015.08.086

    Article  Google Scholar 

  42. Haslinger S, Hummel M, Anghelescu-Hakala A et al (2019) Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag 97:88–96. https://doi.org/10.1016/j.wasman.2019.07.040

    Article  CAS  PubMed  Google Scholar 

  43. Capiati NJ, Porter RS (1975) The concept of one polymer composites modelled with high density polyethylene. J Mater Sci 10:1671–1677. https://doi.org/10.1007/BF00554928

    Article  CAS  Google Scholar 

  44. Ward IM, Hine PJ (2004) The science and technology of hot compaction. Polymer (Guildf) 45:1413–1427. https://doi.org/10.1016/j.polymer.2003.11.050

    Article  CAS  Google Scholar 

  45. Santos RAM, Gorbatikh L, Swolfs Y (2021) Commercial self-reinforced composites: a comparative study. Compos Part B Eng 223:109108. https://doi.org/10.1016/j.compositesb.2021.109108

    Article  CAS  Google Scholar 

  46. Gao C, Yu L, Liu H, Chen L (2012) Development of self-reinforced polymer composites. Prog Polym Sci 37:767–780. https://doi.org/10.1016/j.progpolymsci.2011.09.005

    Article  CAS  Google Scholar 

  47. Uusi-Tarkka E-K, Skrifvars M, Haapala A (2021) Fabricating sustainable all-cellulose composites. Appl Sci 11:10069. https://doi.org/10.3390/app112110069

    Article  CAS  Google Scholar 

  48. Lu X, Zhang MQ, Rong MZ et al (2003) Self-reinforced melt processable composites of sisal. Compos Sci Technol 63:177–186. https://doi.org/10.1016/S0266-3538(02)00204-X

    Article  CAS  Google Scholar 

  49. Soykeabkaew N, Nishino T, Peijs T (2009) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part A Appl Sci Manuf 40:321–328. https://doi.org/10.1016/j.compositesa.2008.10.021

    Article  CAS  Google Scholar 

  50. Huber T, Bickerton S, Müssig J et al (2012) Solvent infusion processing of all-cellulose composite materials. Carbohydr Polym 90:730–733. https://doi.org/10.1016/j.carbpol.2012.05.047

    Article  CAS  PubMed  Google Scholar 

  51. Arévalo R, Picot O, Wilson RM et al (2010) All-cellulose composites by partial dissolution of cotton fibres. J Biobased Mater Bioenergy 4:129–138. https://doi.org/10.1166/jbmb.2010.1077

    Article  CAS  Google Scholar 

  52. Duchemin BJC, Newman RH, Staiger MP (2009) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230. https://doi.org/10.1016/j.compscitech.2009.02.027

    Article  CAS  Google Scholar 

  53. Pullawan T, Wilkinson AN, Zhang LN, Eichhorn SJ (2014) Deformation micromechanics of all-cellulose nanocomposites: Comparing matrix and reinforcing components. Carbohydr Polym 100:31–39. https://doi.org/10.1016/j.carbpol.2012.12.066

    Article  CAS  PubMed  Google Scholar 

  54. Abou-Yousef H, Kamel S (2023) Physico-mechanical properties of all-cellulose composites prepared by different approaches from micro-fibrillated bagasse pulp fibers. Mater Today Commun 35:105672. https://doi.org/10.1016/j.mtcomm.2023.105672

    Article  CAS  Google Scholar 

  55. Austin PR (1976) Chitin solution. 1–4

  56. Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71:458–467. https://doi.org/10.1016/j.carbpol.2007.06.019

    Article  CAS  Google Scholar 

  57. Davidson GF (1937) 4.—The dissolution of chemically modified cotton cellulose in alkaline solutions. Part 3—in solutions of sodium and potassium hydroxide containing dissolved zinc, beryllium and aluminium oxides. J Text Inst Trans 28:T27–T44. https://doi.org/10.1080/19447023708631789

    Article  CAS  Google Scholar 

  58. Yang Q, Lue A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70:2319–2324. https://doi.org/10.1016/j.compscitech.2010.09.012

    Article  CAS  Google Scholar 

  59. Liu W, Budtova T, Navard P (2011) Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions. Cellulose 18:911–920. https://doi.org/10.1007/s10570-011-9552-9

    Article  CAS  Google Scholar 

  60. Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15:789–796. https://doi.org/10.1007/s10570-008-9233-5

    Article  CAS  Google Scholar 

  61. Célino A, Fréour S, Jacquemin F, Casari P (2014) The hygroscopic behavior of plant fibers: a review. Front Chem 1:1–12. https://doi.org/10.3389/fchem.2013.00043

    Article  CAS  Google Scholar 

  62. Miner AR, Gallego RZ, Rojo PG, Mondragon I (2014) Nanocomposites based on matrices extracted from vegetable oils and bacterial cellulose. Cellul Based Compos New Green Nanomater 17:63–78. https://doi.org/10.1002/9783527649440.ch4

    Article  Google Scholar 

  63. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  64. Lee KY, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27. https://doi.org/10.1016/j.compscitech.2014.08.032

    Article  CAS  Google Scholar 

  65. Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55. https://doi.org/10.1007/s10570-015-0779-8

    Article  CAS  Google Scholar 

  66. Korhonen O, Sawada D, Budtova T (2019) All-cellulose composites via short-fiber dispersion approach using NaOH–water solvent. Cellulose 26:4881–4893. https://doi.org/10.1007/s10570-019-02422-z

    Article  CAS  Google Scholar 

  67. Adak B, Mukhopadhyay S (2017) A comparative study on lyocell-fabric based all-cellulose composite laminates produced by different processes. Cellulose 24:835–849. https://doi.org/10.1007/s10570-016-1149-x

    Article  CAS  Google Scholar 

  68. Adak B, Mukhopadhyay S (2017) Effect of pressure on structure and properties of lyocell fabric-based all-cellulose composite laminates. J Text Inst 108:1010–1017. https://doi.org/10.1080/00405000.2016.1209827

    Article  CAS  Google Scholar 

  69. Kamble Z, Mishra RK, Behera BK et al (2021) Design, development, and characterization of advanced textile structural hollow composites. Polymers (Basel) 13:3535. https://doi.org/10.3390/polym13203535

    Article  CAS  PubMed  Google Scholar 

  70. Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207. https://doi.org/10.1016/j.compscitech.2008.03.023

    Article  CAS  Google Scholar 

  71. Yousefi H, Nishino T, Shakeri A et al (2013) Water-repellent all -cellulose nanocomposite using silane coupling treatment. J Adhes Sci Technol 27:1324–1334. https://doi.org/10.1080/01694243.2012.695954

    Article  CAS  Google Scholar 

  72. Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer (Guildf) 46:10221–10225. https://doi.org/10.1016/j.polymer.2005.08.040

    Article  CAS  Google Scholar 

  73. Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydr Polym 79:614–619. https://doi.org/10.1016/j.carbpol.2009.09.008

    Article  CAS  Google Scholar 

  74. Fujisawa S, Saito T, Isogai A (2018) All-cellulose (cellulose-cellulose) green composites. Adv Green Compos 1:111–133. https://doi.org/10.1002/9781119323327.ch6

    Article  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RY wrote the original manuscript. ZK revised and corrected the manuscript.

Corresponding author

Correspondence to Zunjarrao Kamble.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not Applicable.

Consent for publication

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Kamble, Z. Textile waste-based cellulose composites: a review. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09585-6

Navigation