Skip to main content
Log in

Influence of HVOF spraying parameters on microstructure and mechanical properties of FeCrMnCoNi high-entropy coatings (HECs)

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The study aimed to investigate the impact of high velocity oxy-fuel (HVOF) spraying parameters on the inflight particle temperature, velocity, and microstructure of FeCrMnCoNi high-entropy coatings (HECs). The sprayed coatings exhibited a typical lamellar structure with a single solid solution FCC phase and minor oxides. Ex-situ characterization of the coatings was conducted using X-ray diffraction, Raman spectroscopy, and high-resolution scanning electron microscope (HR-SEM) to analyze the phase composition, microstructure, and surface morphology. The findings revealed that fuel-rich flames with a higher feed rate resulted in coatings with low porosity and oxidation as well as high deposition efficiency due to the high velocity and low particle temperatures. Additionally, the transverse scratch tests were conducted to determine the cohesive/adhesive nature of the coatings, and the results demonstrated that the cohesive strength between the splats was influenced by the porosity and area fraction of the oxides. Coatings deposited with oxygen-rich conditions showed maximum hardness, but low cohesive strength compared to coatings sprayed using fuel-rich conditions due to higher oxides formation during spraying. The microstructural changes, phase compositions, and microhardness of the coatings were correlated with the scratch resistance of the HECs developed using three distinct spraying conditions. These results suggest that FeCrMnCoNi HECs hold significant potential for surface protection in various industrial and aerospace applications. Moreover, the findings point toward new material design strategies to attain desired microstructure with enhanced mechanical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared due to legal or ethical reasons.

References

  1. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Meghwal A, Anupam A, Murty BS, Berndt CC, Kottada RS, Ang ASM (2020) Thermal spray high-entropy alloy coatings: a review. Springer, New York

    Book  Google Scholar 

  3. Li J, Huang Y, Meng X, Xie Y (2019) A review on high entropy alloys coatings: fabrication processes and property assessment. Adv Eng Mater 21:1–27

    Article  ADS  Google Scholar 

  4. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375:213–218

    Article  Google Scholar 

  5. Yeh J, Chen S, Lin S, Gan J, Chin T, Shun T, Tsau C, Chang S (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303

    Article  CAS  Google Scholar 

  6. Gao MC, Yeh JW, Liaw PK, Zhang Y (eds) (2016) High-entropy alloys: fundamentals and applications. Springer, Cham

    Google Scholar 

  7. Wall MT, Pantawane MV, Joshi S, Gantz F, Ley NA, Mayer R, Spires A, Young ML, Dahotre N (2020) Laser-coated CoFeNiCrAlTi high entropy alloy onto a H13 steel die head. Surf Coat Technol 387:125473

    Article  CAS  Google Scholar 

  8. Ang ASM, Berndt CC, Sesso ML, Anupam A, Kottada RS, Murty BS (2015) Plasma-sprayed high entropy alloys: microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall Mater Trans A 46:791–800

    Article  CAS  Google Scholar 

  9. Liu CM, Wang HM, Zhang SQ, Tang HB, Zhang AL (2014) Microstructure and oxidation behavior of new refractory high entropy alloys. J Alloys Compd 583:162–169

    Article  CAS  Google Scholar 

  10. Nong ZS, Lei YN, Zhu JC (2018) Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys. Intermetallics 101:144–151

    Article  CAS  Google Scholar 

  11. Shi P, Yu Y, Xiong N, Liu M, Qiao Z, Yi G, Yao Q, Zhao G, Xie E, Wang Q (2020) Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings. Tribol Int 151:106470

    Article  CAS  Google Scholar 

  12. Qiu X (2018) Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification. J Alloys Compd 735:359–364

    Article  CAS  Google Scholar 

  13. Zhang Y, Zhang B, Li K, Zhao G-L, Guo SM (2018) Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J Alloys Compd 734:220–228

    Article  CAS  Google Scholar 

  14. Jin G, Cai Z, Guan Y, Cui X, Liu Z, Li Y (2018) Institute of surface/interface science and technology. Key Laboratory of College of Material Science and Chemical Engineering, Harbin

  15. Chen L, Bobzin K, Zhou Z, Zhao L, Öte M, Königstein T, Tan Z, He D (2019) Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf Coat Technol 358:215–222

    Article  CAS  Google Scholar 

  16. Xiao JK, Tan H, Wu YQ, Chen J, Zhang C (2020) Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying. Surf Coat Technol 385:125430

    Article  CAS  Google Scholar 

  17. Yang P, Liu Y, Zhao X, Cheng J, Li H (2016) Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv Powder Technol 27:1128–1133

    Article  CAS  Google Scholar 

  18. Berndt CC, Hasan F, Tietz U, Schmitz KP (2014) A review of hydroxyapatite coatings manufactured by thermal spray. Adv Calcium Phosphate Biomater. Springer, Cham, pp 267–329

    Chapter  Google Scholar 

  19. Alagarsamy K, Fortier A, Komarasamy M, Kumar N, Mohammad A, Banerjee S, Han H-C, Mishra RS (2016) Mechanical properties of high entropy alloy al 0.1 cocrfeni for peripheral vascular stent application. Cardiovasc Eng Technol 7:448–454

    Article  PubMed  Google Scholar 

  20. Popescu G, Ghiban B, Popescu CA, Rosu L, Trusca R, Carcea I, Soare V, Dumitrescu D, Constantin I, Olaru MT (2018) New TiZrNbTaFe high entropy alloy used for medical applications. SIOP Conf Ser Mater Sci Eng 400:22049

    Google Scholar 

  21. Tian L, Feng Z, Xiong W (2018) Microstructure, microhardness, and wear resistance of AlCoCrFeNiTi/Ni60 coating by plasma spraying. Coatings 8(3):112

    Article  Google Scholar 

  22. Löbel M, Lindner T, Mehner T, Lampke T (2017) Microstructure and wear resistance of AlCoCrFeNiTi high-entropy alloy coatings produced by HVOF. Coatings 7:144

    Article  Google Scholar 

  23. Tsai M-H, Yeh J-W (2014) High-entropy alloys: a critical review. Mater Res Lett 2:107–123

    Article  Google Scholar 

  24. Tsai MH, Yeh JW (2014) High-entropy alloys: a critical review. Mater Res Lett 2(3):107–123

    Article  Google Scholar 

  25. Li Z, Tasan CC, Springer H, Gault B, Raabe D (2017) Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci Rep 7:40704

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Mater 94:124–133

    Article  CAS  ADS  Google Scholar 

  27. Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippan R, Hohenwarter A (2015) Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 96:258–268

    Article  CAS  ADS  Google Scholar 

  28. Zhang Z, Mao MM, Wang J, Gludovatz B, Zhang Z, Mao SX, George EP, Yu Q, Ritchie RO (2015) Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun 6:1–6

    Article  ADS  Google Scholar 

  29. Zhu ZG, Nguyen QB, Ng FL, An XH, Liao XZ, Liaw PK, Nai SML, Wei J (2018) Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr Mater 154:20–24

    Article  CAS  Google Scholar 

  30. Sun SJ, Tian YZ, Lin HR, Dong XG, Wang YH, Zhang ZJ, Zhang ZF (2017) Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater Des 133:122–127

    Article  CAS  Google Scholar 

  31. Tsai K-Y, Tsai M-H, Yeh J-W (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61:4887–4897

    Article  CAS  ADS  Google Scholar 

  32. Bloomfield ME, Christofidou KA, Monni F, Yang Q, Hang M, Jones NG (2021) The influence of Fe variations on the phase stability of CrMnFexCoNi alloys following long-duration exposures at intermediate temperatures. Intermetallics 131:107108

    Article  CAS  Google Scholar 

  33. Christofidou KA, Pickering EJ, Orsatti P, Mignanelli PM, Slater TJA, Stone HJ, Jones NG (2018) On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys. Intermetallics 92:84–92

    Article  CAS  Google Scholar 

  34. Koppoju S, Konduri SP, Chalavadi P, Bonta SR, Mantripragada R (2020) Effect of Ni on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy. Trans Indian Inst Met 73:853–862

    Article  CAS  Google Scholar 

  35. Li H, Li J, Yan C, Zhang X, Xiong D (2020) Microstructure and tribological properties of plasma-sprayed Al0.2Co1.5CrFeNi1.5Ti-Ag composite coating from 25 to 750 C. J Mater Eng Perform 29:1640–1649

    Article  CAS  Google Scholar 

  36. Tian LH, Xiong W, Liu C, Lu S, Fu M (2016) Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating. J Mater Eng Perform 25:5513–5521

    Article  CAS  Google Scholar 

  37. Patel P, Alidokht SA, Sharifi N, Roy A, Harrington K, Stoyanov P, Chromik RR, Moreau C (2022) Microstructural and tribological behavior of thermal spray CrMnFeCoNi High entropy alloy coatings. J Thermal Spray Technol 31:1285–1301

    Article  CAS  ADS  Google Scholar 

  38. Li T, Liu Y, Liu B, Guo W, Xu L (2017) Microstructure and wear behavior of FeCoCrNiMo0.2 high entropy coatings prepared by air plasma spray and the high velocity oxy-fuel spray processes. Coatings 7:151

    Article  Google Scholar 

  39. Oppong Boakye G, Geambazu LE, Ormsdottir AM, Gunnarsson BG, Csaki I, Fanicchia F, Kovalov D, Karlsdottir SN (2022) Microstructural properties and wear resistance of Fe-Cr-Co-Ni-Mo-based high entropy alloy coatings deposited with different coating techniques. Appl Sci 12:3156

    Article  CAS  Google Scholar 

  40. Cao F, Munroe P, Zhou Z, Xie Z (2018) Microstructure and mechanical properties of a multilayered CoCrNi/Ti coating with varying crystal structure. Surf Coat Technol 350:596–602

    Article  CAS  Google Scholar 

  41. Tüten N, Canadinc D, Motallebzadeh A, Bal B (2019) Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti6Al4V substrates. Intermetallics 105:99–106

    Article  Google Scholar 

  42. Zhang W, Tang R, Yang ZB, Liu CH, Chang H, Yang JJ, Liao JL, Yang YY, Liu N (2018) Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding. Surf Coat Technol 347:13–19

    Article  CAS  Google Scholar 

  43. Li X, Feng Y, Liu B, Yi D, Yang X, Zhang W, Chen G, Liu Y, Bai P (2019) Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J Alloys Compd 788:485–494

    Article  CAS  Google Scholar 

  44. Shu FY, Wu L, Zhao HY, Sui SH, Zhou L, Zhang J, He WX, He P, Xu BS (2018) Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating. Mater Lett 211:235–238

    Article  CAS  Google Scholar 

  45. Shu F, Zhang B, Liu T, Sui S, Liu Y, He P, Liu B, Xu B (2019) Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings. Surf Coat Technol 358:667–675

    Article  CAS  Google Scholar 

  46. Ni C, Shi Y, Liu J, Huang G (2018) Characterization of Al0. 5FeCu0. 7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding. Opt Laser Technol 105:257–263

    Article  CAS  ADS  Google Scholar 

  47. Fang Q, Chen Y, Li J, Liu Y, Liu Y (2018) Microstructure and mechanical properties of FeCoCrNiNbX high-entropy alloy coatings. Phys B Condens Matter 550:112–116

    Article  CAS  ADS  Google Scholar 

  48. Wang J, Zhang B, Yu Y, Zhang Z, Zhu S, Lou X, Wang Z (2020) Study of high temperature friction and wear performance of (CoCrFeMnNi) 85Ti15 high-entropy alloy coating prepared by plasma cladding. Surf Coat Technol 384:125337

    Article  CAS  Google Scholar 

  49. Tian L, Fu M, Xiong W (2018) Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance. Materials 11:320

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  50. Xiao JK, Wu YQ, Chen J, Zhang C (2020) Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings. Wear 448–449:203209

    Article  Google Scholar 

  51. Lehtonen J, Koivuluoto H, Ge Y, Juselius A, Hannula SP (2020) Cold gas spraying of a high-entropy CrFeNiMn equiatomic alloy. Coatings 10:53

    Article  CAS  Google Scholar 

  52. Ruiz-Luna H, Lozano-Mandujano D, Alvarado-Orozco JM, Valarezo A, Poblano-Salas CA, Trápaga-Martínez LG, Espinoza-Beltrán FJ, Muñoz-Saldaña J (2014) Effect of HVOF processing parameters on the properties of NiCoCrAlY coatings by design of experiments. J Therm Spray Technol 23:950–961

    Article  CAS  ADS  Google Scholar 

  53. Pawlowski L (2008) The science and engineering of thermal spray coatings. John Wiley & Sons, New York

    Book  Google Scholar 

  54. Brandl W, Toma D, Krüger J, Grabke HJ, Matthäus G (1997) The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings. Surf Coat Technol 94:21–26

    Article  Google Scholar 

  55. Pahlavanyali S, Sabour A, Hirbod M (2003) The hot corrosion behaviour of HVOF sprayed MCrAlX coatings under Na2SO4 (+ NaCl) salt films. Mater Corros 54:687–693

    Article  CAS  Google Scholar 

  56. Deshpande S, Sampath S, Zhang H (2006) Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—case study for Ni–Al. Surf Coat Technol 200:5395–5406

    Article  CAS  Google Scholar 

  57. Clyne TW, Gill SC (1996) Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol 5:401–418

    Article  CAS  ADS  Google Scholar 

  58. Erickson LC, Westergård R, Wiklund U, Axen N, Hawthorne HM, Hogmark S (1998) Cohesion in plasma-sprayed coatings—a comparison between evaluation methods. Wear 214:30–37

    Article  CAS  Google Scholar 

  59. Byon E, Lee SW, Kitamura J, Holmberg K (2013) Adhesion/cohesion strength of plasma sprayed ceramic coatings by scratch testing on cross-section. In: Proc Int Therm Spray Conf, pp 516–519

  60. Vencl A, Arostegui S, Favaro G, Zivic F, Mrdak M, Mitrović S, Popovic V (2011) Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections. Tribol Int 44:1281–1288

    Article  CAS  Google Scholar 

  61. Leigh SH, Berndt CC (1994) A test for coating adhesion on flat substrates—a technical note. J Therm Spray Technol 3:184–190

    Article  CAS  ADS  Google Scholar 

  62. Patel P, Nair RB, Supekar R, McDonald A, Chromik RR, Moreau C, Stoyanov P (2024) Enhanced wear resistance of AlCoCrFeMo high entropy coatings (HECs) through various thermal spray techniques. Surface Coat Technology 477:130311

    Article  CAS  Google Scholar 

  63. Lacombe R (2005) Adhesion measurement methods: theory and practice. CRC Press, Boca Raton

    Book  Google Scholar 

  64. Bouzakis K-D, Asimakopoulos A, Michailidis N, Kompogiannis S, Maliaris G, Giannopoulos G, Pavlidou E, Erkens G (2004) The inclined impact test, an efficient method to characterize coatings’ cohesion and adhesion properties. Thin Solid Films 469:254–262

    Article  ADS  Google Scholar 

  65. Bull SJ, Rickerby DS (2001) Characterization of hard coatings. Handbook of hard coatings. Noyes Publications, Park Ridge, pp 181–228

    Google Scholar 

  66. Heimann RB (2008) Plasma-spray coating: principles and applications. John Wiley & Sons, New York

    Google Scholar 

  67. Valarezo A, Choi WB, Chi W, Gouldstone A, Sampath S (2010) Process control and characterization of NiCr coatings by HVOF-DJ2700 system: a process map approach. J Therm spray Technol 19:852–865

    Article  CAS  ADS  Google Scholar 

  68. Rusch W (2007) Comparison of operating characteristics for gas and liquid fuel HVOF torches. Therm Spray 2007:572

    Google Scholar 

  69. López Báez I, Poblano Salas CA, Muñoz Saldaña J, Trápaga Martínez LG (2015) Effects of the modification of processing parameters on mechanical properties of HVOF Cr2C3–25NiCr coatings. J Therm Spray Technol 24:938–946

    Article  ADS  Google Scholar 

  70. Ludwig GA, Malfatti CF, Schroeder RM, Ferrari VZ, Muller IL (2019) WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: resistance to corrosion and slurry erosion. Surf Coat Technol 377:124918

    Article  CAS  Google Scholar 

  71. Joy DC, Newbury DE, Davidson DL (1982) Electron channeling patterns in the scanning electron microscope. J Appl Phys 53:81–122

    Article  ADS  Google Scholar 

  72. Holt DB (1974) Quantitative scanning electron microscopy. Academic Press, Boca Raton

    Google Scholar 

  73. Schwartz AJ, Kumar M, Adams BL, Field DP (2009) Electron backscatter diffraction in materials science, vol 2. Springer, Cham

    Book  Google Scholar 

  74. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3

    Article  CAS  ADS  Google Scholar 

  75. Oliver W, Pharr G (1992) An improved technique for determining hardness. J Mater Res 7:1564–1583

    Article  CAS  ADS  Google Scholar 

  76. ISO27307:2015 (2015) Thermal spraying—evaluation of adhesion/cohesion of thermal sprayed ceramic coatings by transverse scratch testing. Geneva, Switzerland

  77. A Alidokht S, Gao Y, De Castilho BC, Sharifi N, Harfouche M, Stoyanov P, Makowiec M, Moreau C, Chromik RR (2022) Microstructure and mechanical properties of Tribaloy coatings deposited by high-velocity oxygen fuel. J Mater Sci 57(42):20056–20068

    Article  CAS  ADS  Google Scholar 

  78. Nohava J, Bonferroni B, Bolelli G, Lusvarghi L (2010) Interesting aspects of indentation and scratch methods for characterization of thermally-sprayed coatings. Surf Coat Technol 205:1127–1131

    Article  CAS  Google Scholar 

  79. Guo S, Ng C, Lu J, Liu CT (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 109:103505

    Article  ADS  Google Scholar 

  80. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK (2008) Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 10:534–538

    Article  CAS  Google Scholar 

  81. Yeh MCGJ, Liaw PK, ZhangY High-Entropy Alloys

  82. Laplanche G, Volkert UF, Eggeler G, George EP (2016) Oxidation behavior of the CrMnFeCoNi high-entropy. MOxid Met 85:629–645

    CAS  Google Scholar 

  83. Soler MAG, Qu F (2012) Raman spectroscopy of iron oxide nanoparticles BT. In: Kumar CSSR (ed) Raman spectroscopy for nanomaterials characterization. Springer, Berlin, pp 379–416

    Chapter  Google Scholar 

  84. Tran MV, Ha AT, Le PML (2015) Nanoflake manganese oxide and nickel-manganese oxide synthesized by electrodeposition for electrochemical capacitor. J Nanomater 16:230–230

    Google Scholar 

  85. Zhang L, Wang D, Liao X-J, Chen R, Luo X-T, Li C-J (2023) Study on the oxidation resistance mechanism of self-healable NiAl coating deposited by atmospheric plasma spraying. npj Mater Degrad 7:62

    Article  CAS  Google Scholar 

  86. Davis JR (2004) Handbook of thermal spray technology. ASM international, Washington

    Google Scholar 

  87. Cabral-Miramontes JA, Gaona-Tiburcio C, Almeraya-Calderón F, Estupiñan-Lopez FH, Pedraza-Basulto GK, Poblano-Salas CA (2014) Parameter studies on high-velocity oxy-fuel spraying of CoNiCrAlY coatings used in the aeronautical industry. Int J Corros 2014:703806

    Article  Google Scholar 

  88. Saaedi J, Coyle TW, Arabi H, Mirdamadi S, Mostaghimi J (2010) Effects of HVOF process parameters on the properties of Ni-Cr coatings. J Therm Spray Technol 19:521–530

    Article  CAS  ADS  Google Scholar 

  89. Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw PK (2021) Mechanical behavior of high-entropy alloys. Prog Mater Sci 118:100777

    Article  CAS  Google Scholar 

  90. Li Z, Zhao S, Alotaibi SM, Liu Y, Wang B, Meyers MA (2018) Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Mater 151:424–431

    Article  CAS  ADS  Google Scholar 

  91. Zhu C, Lu ZP, Nieh TG (2013) Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater 61:2993–3001

    Article  CAS  ADS  Google Scholar 

  92. Sha C (2020) Microstructure, mechanical properties, scratch responses and wear behaviours of transition metal nitride and high entropy alloy coatings. Chuhan Sha School of Materials Science and Engineering

  93. Khan NA (2021) Entropy alloy (HEA) and high entropy ceramic (HEC) thin films. Naveed Aziz Khan The University of Sydney

Download references

Acknowledgements

The study was a collaborative effort between two groups from Concordia University and McGill University in Canada. The authors would like to express their gratitude to Dr. Fadhel Ben Ettouil for his contributions to the experimental work. The authors also thank Dr. Lise Guichaoua and Mr. Nicholas Brodusch at the Facility for Electron Microscopy Research of McGill University for their assistance with advanced characterization techniques and Dr. Sadegh Mahdipor for helping with the procurement of powders. The authors are grateful for the financial support provided by the Natural Sciences and Engineering Research Council (NSERC) Project Number CRDPJ 530409-18 and the Consortium for Research and Innovation in Aerospace in Québec (CRIAQ) Project Number MANU-1719.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Payank Patel, Pantcho Stoyanov, Richard R. Chromik or Christian Moreau.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Munagala, V.N.V., Sharifi, N. et al. Influence of HVOF spraying parameters on microstructure and mechanical properties of FeCrMnCoNi high-entropy coatings (HECs). J Mater Sci 59, 4293–4323 (2024). https://doi.org/10.1007/s10853-024-09476-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09476-w

Navigation