Skip to main content

Advertisement

Log in

Novel multifunctional bioactive glass incorporated alginate/poly(amidoamine) hydrogels with controlled drug release for cartilage tissue regeneration

  • Materials for life science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tissue engineering faces an intriguing challenge in creating biomaterials for cartilage repair. Within the category of biopolymeric scaffolds, hydrogels made from polysaccharides are particularly suitable for regenerating cartilage tissue. In this paper, a new formulation of biocompatible alginate-based hydrogel for joint cartilage regeneration was investigated. An alginate-dendrimer hydrogel obtained by covalently grafting alginate with polyamidoamine generation 5 dendrimer. 58S bioactive glass was synthesized through sol–gel procedures and was added to the hydrogel before cross-linking. The obtained hydrogel is an innovative system with sustained drug-releasing properties and improved mechanical behavior in comparison to the alginate matrix. For instance, the tensile and compressive modulus of the fabricated composite hydrogel increased from 0.035 to 0.072 MPa and 0.17 to 0.40 MPa respectively. Whereas the degradation ratio decreased from 0.26 to 0.09% by the addition of polyamidoamine and bioactive glass. The developed hydrogel also showed better properties in in-vitro studies such as swelling and degradation. MTT assay showed no toxicity and revealed the biocompatibility of prepared hydrogel. The MTT test, also performed better adhesion of cells by the addition of bioactive glass powder. The composite hydrogel loaded with tetracycline hydrochloride showed more sustained drug-release behavior and excellent antibacterial properties compared to bear alginate hydrogel. Therefore, the Alginate/polyamidoamine/bioactive glass hydrogel can couple the well-known bioactive properties of 58S bioactive glass with good biocompatibility of alginate-dendrimer hydrogels, opening new approaches in the field of tissue engineering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tran HDN, Park KD, Ching YC et al (2020) A comprehensive review on polymeric hydrogel and its composite: matrices of choice for bone and cartilage tissue engineering. J Ind Eng Chem 89:58–82. https://doi.org/10.1016/j.jiec.2020.06.017

    Article  CAS  Google Scholar 

  2. Gao X, Gao L, Groth T et al (2019) Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. J Biomed Mater Res Part A 107:2076–2087. https://doi.org/10.1002/jbm.a.36720

    Article  CAS  Google Scholar 

  3. Zhang Z-Z, Jiang D, Ding J-X et al (2016) Role of scaffold mean pore size in meniscus regeneration. Acta Biomater 43:314–326. https://doi.org/10.1016/j.actbio.2016.07.050

    Article  CAS  Google Scholar 

  4. Lima AC, Ferreira H, Reis RL, Neves NM (2019) Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opin Drug Deliv 16:795–813. https://doi.org/10.1080/17425247.2019.1635117

    Article  CAS  Google Scholar 

  5. Cutcliffe HC, DeFrate LE (2020) Comparison of cartilage mechanical properties measured during creep and recovery. Sci Rep 10:1547. https://doi.org/10.1038/s41598-020-58220-2

    Article  CAS  Google Scholar 

  6. Bilgen B, Jayasuriya CT, Owens BD (2018) Current concepts in meniscus tissue engineering and repair. Adv Healthc Mater 7:1701407. https://doi.org/10.1002/adhm.201701407

    Article  CAS  Google Scholar 

  7. Ma X, Yang R, Wang P et al (2022) Bioinspired dual dynamic network hydrogels promote cartilage regeneration through regulating BMSC chondrogenic differentiation. Mater Today Chem 23:100648. https://doi.org/10.1016/j.mtchem.2021.100648

    Article  CAS  Google Scholar 

  8. Asadi N, Alizadeh E, Salehi R et al (2018) Nanocomposite hydrogels for cartilage tissue engineering: a review. Artif Cells Nanomed Biotechnol 46:465–471. https://doi.org/10.1080/21691401.2017.1345924

    Article  CAS  Google Scholar 

  9. Chuang E-Y, Chiang C-W, Wong P-C, Chen C-H (2018) Hydrogels for the application of articular cartilage tissue engineering: a review of hydrogels. Adv Mater Sci Eng 2018:1–13. https://doi.org/10.1155/2018/4368910

    Article  CAS  Google Scholar 

  10. Yang F, Zhao J, Koshut WJ et al (2020) A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv Funct Mater 30:2003451. https://doi.org/10.1002/adfm.202003451

    Article  CAS  Google Scholar 

  11. Bertuola M, Aráoz B, Gilabert U et al (2021) Gelatin–alginate–hyaluronic acid inks for 3D printing: effects of bioglass addition on printability, rheology and scaffold tensile modulus. J Mater Sci 56:15327–15343. https://doi.org/10.1007/s10853-021-06250-0

    Article  CAS  Google Scholar 

  12. Zhang M, Zhao X (2020) Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 162:1414–1428. https://doi.org/10.1016/j.ijbiomac.2020.07.311

    Article  CAS  Google Scholar 

  13. García-García P, Reyes R, Pérez-Herrero E et al (2020) Alginate-hydrogel versus alginate-solid system efficacy in bone regeneration in osteoporosis. Mater Sci Eng C 115:111009. https://doi.org/10.1016/j.msec.2020.111009

    Article  CAS  Google Scholar 

  14. Chen Z, Lv Y (2022) Gelatin/sodium alginate composite hydrogel with dynamic matrix stiffening ability for bone regeneration. Compos Part B Eng 243:110162. https://doi.org/10.1016/j.compositesb.2022.110162

    Article  CAS  Google Scholar 

  15. Liu W, Madry H, Cucchiarini M (2022) Application of alginate hydrogels for next-generation articular cartilage regeneration. Int J Mol Sci 23:1147. https://doi.org/10.3390/ijms23031147

    Article  CAS  Google Scholar 

  16. Gorroñogoitia I, Urtaza U, Zubiarrain-Laserna A et al (2022) A study of the printability of alginate-based bioinks by 3D bioprinting for articular cartilage tissue engineering. Polymers 14:354. https://doi.org/10.3390/polym14020354

    Article  CAS  Google Scholar 

  17. Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H (2020) Alginate based scaffolds for cartilage tissue engineering: a review. Int J Polym Mater Polym Biomater 69:230–247. https://doi.org/10.1080/00914037.2018.1562924

    Article  CAS  Google Scholar 

  18. Calori IR, Braga G, de Jesus P, da CC, et al (2020) Polymer scaffolds as drug delivery systems. Eur Polym J 129:109621. https://doi.org/10.1016/j.eurpolymj.2020.109621

    Article  CAS  Google Scholar 

  19. Moshaverinia A, Xu X, Chen C et al (2013) Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater 9:9343–9350. https://doi.org/10.1016/j.actbio.2013.07.023

    Article  CAS  Google Scholar 

  20. El-Houssiny AS, Ward AA, Mostafa DM et al (2016) Drug–polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies. Adv Nat Sci Nanosci Nanotechnol 7:025014. https://doi.org/10.1088/2043-6262/7/2/025014

    Article  CAS  Google Scholar 

  21. Mathew M, Rad MA, Mata JP et al (2022) Hyperbranched polymers tune the physicochemical, mechanical, and biomedical properties of alginate hydrogels. Mater Today Chem 23:100656. https://doi.org/10.1016/j.mtchem.2021.100656

    Article  CAS  Google Scholar 

  22. Malik N, Wiwattanapatapee R, Klopsch R et al (2000) Dendrimers. J Control Release 65:133–148. https://doi.org/10.1016/S0168-3659(99)00246-1

    Article  CAS  Google Scholar 

  23. Matai I, Gopinath P (2016) Chemically cross-linked hybrid nanogels of alginate and PAMAM dendrimers as efficient anticancer drug delivery vehicles. ACS Biomater Sci Eng 2:213–223. https://doi.org/10.1021/acsbiomaterials.5b00392

    Article  CAS  Google Scholar 

  24. Staehlke S, Lehnfeld J, Schneider A et al (2019) Terminal chemical functions of polyamidoamine dendrimer surfaces and its impact on bone cell growth. Mater Sci Eng C 101:190–203. https://doi.org/10.1016/j.msec.2019.03.073

    Article  CAS  Google Scholar 

  25. Patil S, Nune K, Misra R (2018) Alginate/poly(amidoamine) injectable hybrid hydrogel for cell delivery. J Biomater Appl 33:295–314. https://doi.org/10.1177/0885328218790211

    Article  CAS  Google Scholar 

  26. Rahaman MN, Day DE, Sonny Bal B et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373. https://doi.org/10.1016/j.actbio.2011.03.016

    Article  CAS  Google Scholar 

  27. Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29:1245–1255. https://doi.org/10.1016/j.jeurceramsoc.2008.08.025

    Article  CAS  Google Scholar 

  28. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51:271–310. https://doi.org/10.1007/s10853-015-9382-5

    Article  CAS  Google Scholar 

  29. Kargozar S, Hamzehlou S, Baino F (2019) Can bioactive glasses be useful to accelerate the healing of epithelial tissues? Mater Sci Eng C 97:1009–1020. https://doi.org/10.1016/j.msec.2019.01.028

    Article  CAS  Google Scholar 

  30. Sonatkar J, Kandasubramanian B (2021) Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 160:110801. https://doi.org/10.1016/j.eurpolymj.2021.110801

    Article  CAS  Google Scholar 

  31. Miguez-Pacheco V, de Ligny D, Schmidt J et al (2018) Development and characterization of niobium-releasing silicate bioactive glasses for tissue engineering applications. J Eur Ceram Soc 38:871–876. https://doi.org/10.1016/j.jeurceramsoc.2017.07.028

    Article  CAS  Google Scholar 

  32. Balasubramanian P, Büttner T, Miguez Pacheco V, Boccaccini AR (2018) Boron-containing bioactive glasses in bone and soft tissue engineering. J Eur Ceram Soc 38:855–869. https://doi.org/10.1016/j.jeurceramsoc.2017.11.001

    Article  CAS  Google Scholar 

  33. Shahrbabak MSN, Sharifianjazi F, Rahban D, Salimi A (2019) A comparative investigation on bioactivity and antibacterial properties of sol-gel derived 58S bioactive glass substituted by Ag and Zn. Silicon 11:2741–2751. https://doi.org/10.1007/s12633-018-0063-2

    Article  CAS  Google Scholar 

  34. Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311. https://doi.org/10.1002/jbm.10207

    Article  CAS  Google Scholar 

  35. Meng J, Boschetto F, Yagi S et al (2022) Melt-electrowritten poly(L-lactic acid)- and bioglass-reinforced biomimetic hydrogel for bone regeneration. Mater Des 219:110781. https://doi.org/10.1016/j.matdes.2022.110781

    Article  CAS  Google Scholar 

  36. Zhang X, Li Y, Ma Z et al (2021) Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioact Mater 6:3692–3704. https://doi.org/10.1016/j.bioactmat.2021.03.038

    Article  CAS  Google Scholar 

  37. Vukajlovic D, Parker J, Bretcanu O, Novakovic K (2019) Chitosan based polymer/bioglass composites for tissue engineering applications. Mater Sci Eng C 96:955–967. https://doi.org/10.1016/j.msec.2018.12.026

    Article  CAS  Google Scholar 

  38. Lin B, Hu H, Deng Z et al (2020) Novel bioactive glass cross-linked PVA hydrogel with enhanced chondrogenesis properties and application in mice chondrocytes for cartilage repair. J Non Cryst Solids 529:119594. https://doi.org/10.1016/j.jnoncrysol.2019.119594

    Article  CAS  Google Scholar 

  39. Sánchez-Aguinagalde O, Lejardi A, Meaurio E et al (2021) Novel hydrogels of chitosan and poly(vinyl alcohol) reinforced with inorganic particles of bioactive glass. Polym Basel 13:691. https://doi.org/10.3390/polym13050691

    Article  CAS  Google Scholar 

  40. Zhou L, Fan L, Zhang F-M et al (2021) Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioact Mater 6:890–904. https://doi.org/10.1016/j.bioactmat.2020.09.012

    Article  CAS  Google Scholar 

  41. Srinivasan S, Jayasree R, Chennazhi KP et al (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87:274–283. https://doi.org/10.1016/j.carbpol.2011.07.058

    Article  CAS  Google Scholar 

  42. Clare A, Jones JR (2012) Bio-glasses: an introduction. Wiley, Hoboken, pp 179–202

    Google Scholar 

  43. Moghanian A, Firoozi S, Tahriri M (2017) Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass. Ceram Int 43(15):12835–12843

    Article  CAS  Google Scholar 

  44. Jones JR (2015) Reprint of: review of bioactive glass: from hench to hybrids. Acta Biomater 23:S53–S82. https://doi.org/10.1016/j.actbio.2015.07.019

    Article  Google Scholar 

  45. Schulz A, Katsen-Globa A, Huber EJ et al (2018) Poly(amidoamine)-alginate hydrogels: directing the behavior of mesenchymal stem cells with charged hydrogel surfaces. J Mater Sci Mater Med 29:105. https://doi.org/10.1007/s10856-018-6113-x

    Article  CAS  Google Scholar 

  46. Farokhi M, Solouk A, Mirzadeh H et al (2023) An injectable enzymatically crosslinked and mechanically tunable silk fibroin/chondroitin sulfate chondro-inductive hydrogel. Macromol Mater Eng 308:2200503. https://doi.org/10.1002/mame.202200503

    Article  CAS  Google Scholar 

  47. Sani M, Hosseinie R, Latifi M et al (2022) Engineered artificial articular cartilage made of decellularized extracellular matrix by mechanical and IGF-1 stimulation. Biomater Adv 139:213019. https://doi.org/10.1016/j.bioadv.2022.213019

    Article  CAS  Google Scholar 

  48. Gu P, Li B, Wu B et al (2020) Controlled hydration, transition, and drug release realized by adjusting layer thickness in alginate-Ca2+/poly( N -isopropylacrylamide) Interpenetrating polymeric network hydrogels on cotton fabrics. ACS Biomater Sci Eng 6:5051–5060. https://doi.org/10.1021/acsbiomaterials.0c00756

    Article  CAS  Google Scholar 

  49. Petrova VA, Elokhovskiy VY, Raik SV et al (2019) Alginate gel reinforcement with chitin nanowhiskers modulates rheological properties and drug release profile. Biomolecules 9:291. https://doi.org/10.3390/biom9070291

    Article  CAS  Google Scholar 

  50. Naghizadeh Z, Karkhaneh A, Nokhbatolfoghahaei H et al (2021) Cartilage regeneration with dual-drug-releasing injectable hydrogel/microparticle system: in vitro and in vivo study. J Cell Physiol 236:2194–2204. https://doi.org/10.1002/jcp.30006

    Article  CAS  Google Scholar 

  51. Chen H, Xing X, Tan H et al (2017) Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C 70:287–295. https://doi.org/10.1016/j.msec.2016.08.086

    Article  CAS  Google Scholar 

  52. Hafezi Moghaddam R, Dadfarnia S, Shabani AMH et al (2019) Electron beam irradiation synthesis of porous and non-porous pectin based hydrogels for a tetracycline drug delivery system. Mater Sci Eng C 102:391–404. https://doi.org/10.1016/j.msec.2019.04.071

    Article  CAS  Google Scholar 

  53. Kaviani A, Pircheraghi G, Bagheri R, Goharpey F (2023) Polyelectrolyte complexes between chitosan and quince seed gum: a rheological, structural, and multiple dye adsorption study. J Polym Environ 31:852–869. https://doi.org/10.1007/s10924-022-02634-8

    Article  CAS  Google Scholar 

  54. Costa VC, Costa HS, Vasconcelos WL et al (2007) Preparation of hybrid biomaterials for bone tissue engineering. Mater Res 10:21–26. https://doi.org/10.1590/S1516-14392007000100006

    Article  CAS  Google Scholar 

  55. Saqaei M, Fathi M, Edris H, Mortazavi V (2015) Preparation and biocompatibility evaluation of bioactive glass–forsterite nanocomposite powder for oral bone defects treatment applications. Mater Sci Eng C 56:409–416. https://doi.org/10.1016/j.msec.2015.07.002

    Article  CAS  Google Scholar 

  56. Li X, Cho B, Martin R et al (2019) Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction. Sci Transl Med 11:eaau6210. https://doi.org/10.1126/scitranslmed.aau6210

    Article  CAS  Google Scholar 

  57. Yacob N, Hashim K (2014) Morphological effect on swelling behavior of hydrogel. 153–159

  58. de Nunes R, M, Girão VCC, Cunha PLR, et al (2021) Decreased sulfate content and zeta potential distinguish glycosaminoglycans of the extracellular matrix of osteoarthritis cartilage. Front Med 8:612370. https://doi.org/10.3389/fmed.2021.612370

    Article  Google Scholar 

  59. Xu HHK, Simon CG (2005) Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26:1337–1348. https://doi.org/10.1016/j.biomaterials.2004.04.043

    Article  CAS  Google Scholar 

  60. Gaharwar AK, Rivera C, Wu C-J et al (2013) Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics. Mater Sci Eng C 33:1800–1807. https://doi.org/10.1016/j.msec.2012.12.099

    Article  CAS  Google Scholar 

  61. Kumar BYS, Isloor AM, Kumar GCM et al (2019) Nanohydroxyapatite reinforced chitosan composite hydrogel with tunable mechanical and biological properties for cartilage regeneration. Sci Rep 9:15957. https://doi.org/10.1038/s41598-019-52042-7

    Article  CAS  Google Scholar 

  62. Mortier C, Costa DCS, Oliveira MB et al (2022) Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. Mater Today Chem 26:101222. https://doi.org/10.1016/j.mtchem.2022.101222

    Article  CAS  Google Scholar 

  63. Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J (2019) A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 117:64–76. https://doi.org/10.1016/j.eurpolymj.2019.05.004

    Article  CAS  Google Scholar 

  64. Iviglia G, Cassinelli C, Torre E et al (2016) Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Acta Biomater 44:97–109. https://doi.org/10.1016/j.actbio.2016.08.012

    Article  CAS  Google Scholar 

  65. Faghihi S, Gheysour M, Karimi A, Salarian R (2014) Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J Appl Phys 115:083513. https://doi.org/10.1063/1.4864153

    Article  CAS  Google Scholar 

  66. Abedini AA, Pircheraghi G, Kaviani A (2023) The role of calcium crosslinking and glycerol plasticizing on the physical and mechanical properties of superabsorbent. J Polym Res 30:20. https://doi.org/10.1007/s10965-022-03397-5

    Article  CAS  Google Scholar 

  67. Jang J, Seol Y-J, Kim HJ et al (2014) Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. J Mech Behav Biomed Mater 37:69–77. https://doi.org/10.1016/j.jmbbm.2014.05.004

    Article  CAS  Google Scholar 

  68. Jiang Y-Y, Zhu Y-J, Li H et al (2017) Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. J Colloid Interface Sci 497:266–275. https://doi.org/10.1016/j.jcis.2017.03.032

    Article  CAS  Google Scholar 

  69. Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734. https://doi.org/10.1016/j.biomaterials.2009.01.034

    Article  CAS  Google Scholar 

  70. Di S, Liu X, Liu D et al (2016) A multifunctional porous scaffold with capacities of minimally invasive implantation, self-fitting and drug delivery. Mater Today Chem 1:52–62. https://doi.org/10.1016/j.mtchem.2016.11.004

    Article  Google Scholar 

  71. Cheng Y, Lu J, Liu S et al (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64. https://doi.org/10.1016/j.carbpol.2014.02.034

    Article  CAS  Google Scholar 

  72. Mikael PE, Kim HS, Nukavarapu SP (2018) Hybrid extracellular matrix design for cartilage-mediated bone regeneration. J Biomed Mater Res Part B Appl Biomater 106:300–309. https://doi.org/10.1002/jbm.b.33842

    Article  CAS  Google Scholar 

  73. He X, Zeng L, Cheng X et al (2021) Shape memory composite hydrogel based on sodium alginate dual crosslinked network with carboxymethyl cellulose. Eur Polym J 156:110592. https://doi.org/10.1016/j.eurpolymj.2021.110592

    Article  CAS  Google Scholar 

  74. Mansoorianfar M, Shahin K, Mirström MM, Li D (2021) Cellulose-reinforced bioglass composite as flexible bioactive bandage to enhance bone healing. Ceram Int 47:416–423. https://doi.org/10.1016/j.ceramint.2020.08.148

    Article  CAS  Google Scholar 

  75. Zhang H, Xiong Y, Dong L et al (2021) Microstructural, mechanical properties and strengthening mechanism of DLP produced β-tricalcium phosphate scaffolds by incorporation of MgO/ZnO/58S bioglass. Ceram Int 47:25863–25874. https://doi.org/10.1016/j.ceramint.2021.05.317

    Article  CAS  Google Scholar 

  76. Farag MM (2023) Recent trends on biomaterials for tissue regeneration applications: review. J Mater Sci 58:527–558. https://doi.org/10.1007/s10853-022-08102-x

    Article  CAS  Google Scholar 

  77. Keshavarz M, Alizadeh P (2021) On the role of alginate coating on the mechanical and biological properties of 58S bioactive glass scaffolds. Int J Biol Macromol 167:947–961. https://doi.org/10.1016/j.ijbiomac.2020.11.051

    Article  CAS  Google Scholar 

  78. Liu H, Yazici H, Ergun C et al (2008) An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater 4:1472–1479. https://doi.org/10.1016/j.actbio.2008.02.025

    Article  CAS  Google Scholar 

  79. Rocton N, Oudadesse H, Lefeuvre B et al (2020) Fine analysis of interaction mechanism of bioactive glass surface after soaking in SBF solution: AFM and ICP-OES investigations. Appl Surf Sci 505:144076. https://doi.org/10.1016/j.apsusc.2019.144076

    Article  CAS  Google Scholar 

  80. Montalbano G, Molino G, Fiorilli S, Vitale-Brovarone C (2020) Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: a hybrid formulation for 3D printing of bone scaffolds. J Eur Ceram Soc 40:3689–3697. https://doi.org/10.1016/j.jeurceramsoc.2020.02.018

    Article  CAS  Google Scholar 

  81. Juhasz JA, Best SM (2012) Bioactive ceramics: processing, structures and properties. J Mater Sci 47:610–624. https://doi.org/10.1007/s10853-011-6063-x

    Article  CAS  Google Scholar 

  82. Abou-Okeil A, Aly AA, Amr A, Soliman AAF (2019) Biocompatible hydrogel for cartilage repair with adjustable properties. Polym Adv Technol 30:2026–2033. https://doi.org/10.1002/pat.4635

    Article  CAS  Google Scholar 

  83. Abedi-Gaballu F, Dehghan G, Ghaffari M et al (2018) PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today 12:177–190. https://doi.org/10.1016/j.apmt.2018.05.002

    Article  Google Scholar 

  84. Kheraldine H, Rachid O, Habib AM et al (2021) Emerging innate biological properties of nano-drug delivery systems: a focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev 178:113908. https://doi.org/10.1016/j.addr.2021.113908

    Article  CAS  Google Scholar 

  85. Fana M, Gallien J, Srinageshwar B et al (2020) PAMAM dendrimer nanomolecules utilized as drug delivery systems for potential treatment of glioblastoma: a systematic review. Int J Nanomed 15:2789–2808. https://doi.org/10.2147/IJN.S243155

    Article  CAS  Google Scholar 

  86. Najafi F, Pashaei-Sarnaghi R, Salami-Kalajahi M, Roghani-Mamaqani H (2021) Application of poly(amidoamine) dendrimer as transfer agent to synthesize poly(amidoamine)-b-poly(methyl acrylate) amphiphilc block copolymers: self-assembly in aqueous media and drug delivery. J Drug Deliv Sci Technol 64:102626. https://doi.org/10.1016/j.jddst.2021.102626

    Article  CAS  Google Scholar 

  87. Goodarzi K, Jonidi Shariatzadeh F, Solouk A et al (2020) Injectable drug loaded gelatin based scaffolds as minimally invasive approach for drug delivery system: CNC/PAMAM nanoparticles. Eur Polym J 139:109992. https://doi.org/10.1016/j.eurpolymj.2020.109992

    Article  CAS  Google Scholar 

  88. Xu Q, Huang W, Jiang L et al (2013) KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release. Carbohydr Polym 97:565–570. https://doi.org/10.1016/j.carbpol.2013.05.007

    Article  CAS  Google Scholar 

  89. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071. https://doi.org/10.1038/natrevmats.2016.71

    Article  CAS  Google Scholar 

  90. Bruschi M (2015) Strategies to modify the drug release from pharmaceutical systems. Woodhead, Sawston, pp 37–89

    Google Scholar 

Download references

Acknowledgement

The authors thank the Department of Materials Science and Engineering, Tarbiat Modares University of Tehran and Dr. Reza Poursalehi for providing the facility to carry out the work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conceptualization. FMZ: Material preparation, Methodology, Data collection and statistical Analysis, Writing-original draft. PA: Methodology, Data analysis, Supervision, Validation, and Writing—review and Editing the manuscript. GK: Material preparation, Data collection and Analysis, Editing the manuscript. AK: Methodology, Data analysis, Validation, Writing—review and Editing the manuscript.

Corresponding author

Correspondence to Parvin Alizadeh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disklose.

Ethical approval

Not applicable.

Additional information

Handling Editor: Andréa de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motesadi Zarandi, F., Alizadeh, P., Kohoolat, G. et al. Novel multifunctional bioactive glass incorporated alginate/poly(amidoamine) hydrogels with controlled drug release for cartilage tissue regeneration. J Mater Sci 59, 1550–1569 (2024). https://doi.org/10.1007/s10853-023-09275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09275-9

Navigation