Skip to main content
Log in

Effect of microstructure on initial corrosion behavior of T92/HR3C dissimilar metal welded joint

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hand-tungsten inert gas welding is employed using Inconel 82 as a filler metal to weld T92 ferritic steel and HR3C austenitic steel. The microstructures of the joints are analyzed via optical and transmission electron microscopy. The corrosion resistance of the joints is evaluated via electrochemical and immersion corrosion tests, whereas the corrosion products and passive films are analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that the weld metal region of the T92/HR3C dissimilar metal joint formed a dense passivation film containing Cr2O3 and NiO owing to the highest Cr and Ni contents, which effectively prevented the entry of chloride ions into the matrix, thus impeding corrosion and providing optimal corrosion resistance. Compared to the base material of T92, the heat-affected zone of T92 shows fine austenite grains and subgrain structures, as well as a relatively thick Cr2O3 passivation film, which improved the corrosion resistance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Availability of data and material

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Zhao Y, Liu HL, Wei LL, Chen LQ (2022) An overview on the novel heat-resistant ferritic stainless steels. Tungsten. Doi: https://doi.org/10.1007/s42864-022-00171-4

  2. Cao J, Gong Y, Zhu K, Yang ZG, Luo XM, Gu FM (2011) Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Mater Des 32(5):2763–2770. https://doi.org/10.1016/j.matdes.2011.01.008

    Article  CAS  Google Scholar 

  3. Kaneko K, Matsumura S, Sadakata A, Fujita K, Moon WJ, Ozaki S, Nishimura N, Tomokiyo Y (2004) Characterization of carbides at different boundaries of 9Cr-steel. Mater Sci Eng A 374(1–2):82–89. https://doi.org/10.1016/j.msea.2003.12.065

    Article  CAS  Google Scholar 

  4. Wang QB, Xin RS, Wang ZC, Han ZW, Jiao XD, Kang J (2022) Microstructure and its effect on high temperature tensile properties of T92/HR3C dissimilar weld joints. J Manuf Process 82:792–799. https://doi.org/10.1016/j.jmapro.2022.08.046

    Article  Google Scholar 

  5. Kang J, Wang QB, Wang ZC, Han WZ, Zuo Y, Zhang H, Jiao XD (2022) A review on high temperature rupture mechanisms of dissimilar metal welded joints for the USC thermal power units. J Mech Eng-En 58(24):58–83. https://doi.org/10.3901/JME.2022.24.058

    Article  Google Scholar 

  6. Lee WS, Tzeng FT, Lin CF (2005) Mechanical properties of 304L stainless steel SMAW joints under dynamic impact loading. J Mater Sci 40:4839–4847. https://doi.org/10.1007/s10853-005-1920-0

    Article  CAS  Google Scholar 

  7. Maurya AK, Chhibber R, Pandey C (2023) Studies on residual stresses and structural integrity of the dissimilar gas tungsten arc welded joint of sDSS 2507/Inconel 625 for marine application. J Mater Sci. https://doi.org/10.1007/s10853-023-08562-9

    Article  Google Scholar 

  8. Zhou RY, Zhu LH, Liu YY, Lu ZR, Chen L, Ma X (2017) Microstructural evolution and the effect on hardness of Sanicro 25 welded joint base metal after creep at 973 K. J Mater Sci 52:6161–6172. https://doi.org/10.1007/s10853-017-0758-6

    Article  CAS  Google Scholar 

  9. Hu YY, Chen JP, Wang B (2022) Global nonequilibrium energy criterion for predicting strength of 316L stainless steel under complex loadings: theoretical modeling and experimental validation. Sci China Phys Mech 65(4):244611. https://doi.org/10.1007/s11433-021-1850-0

    Article  Google Scholar 

  10. Samal MK, Seidenfuss M, Roos E et al (2011) Investigation of failure behavior of ferritic–austenitic type of dissimilar steel welded joints. Eng Fail Anal 18(3):999–1008. https://doi.org/10.1016/j.engfailanal.2010.12.011

    Article  CAS  Google Scholar 

  11. Kang J, Wang QB, Wang ZC, Han ZW, Xin RS, Jiao XD (2022) Fatigue fracture mechanism of T92/HR3C dissimilar metal weld joints at elevated temperature. Mater Charact 190:112081. https://doi.org/10.1016/j.matchar.2022.112081

    Article  CAS  Google Scholar 

  12. Quagraine EK (2018) Chloride contamination of the water/steam cycle in power plants: part V. Evidence for chlorinated compound vapor ingress even after condenser re-tubing and tubesheet coating. PP Chem 20(1):4–22

    CAS  Google Scholar 

  13. Wang S, Ma Q, Li Y (2011) Characterization of microstructure, mechanical properties and corrosion resistance of dissimilar welded joint between 2205 duplex stainless steel and 16MnR. Mater Des 32(2):831–837. https://doi.org/10.1016/j.matdes.2010.07.012

    Article  CAS  Google Scholar 

  14. Wang C, Yu Y, Yu J et al (2020) Microstructure evolution and corrosion behavior of dissimilar 304/430 stainless steel welded joints. J Manuf Process 50:183–191. https://doi.org/10.1016/j.jmapro.2019.12.015

    Article  Google Scholar 

  15. Peethala AK, Naik B, Rambabu G (2023) Optimization of welding parameters and study on mechanical and pitting corrosion behavior of dissimilar stainless steel GTA welds. Chem Data Collect 43:100978. https://doi.org/10.1016/j.cdc.2022.100978

    Article  CAS  Google Scholar 

  16. Vidyarthy RS, Kulkarni A, Dwivedi DK (2017) Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint. Mater Sci Eng A 695:249–257. https://doi.org/10.1016/j.msea.2017.04.038

    Article  CAS  Google Scholar 

  17. Mittal R, Sidhu BS (2018) Oxidation behaviour of T91/347H welds. J Mater Process Tech 261:266–279. https://doi.org/10.1016/j.jmatprotec.2018.05.020

    Article  CAS  Google Scholar 

  18. Dak G, Sirohi S, Pandey C (2022) Study on microstructure and mechanical behavior relationship for laser-welded dissimilar joint of P92 martensitic and 304L austenitic steel. Int J Pres Ves Pip 196:104629. https://doi.org/10.1016/j.ijpvp.2022.104629

    Article  CAS  Google Scholar 

  19. Xue JL, Guo W, Yang J, Xia MS, Zhao G, Tan CW, Wan ZD, Chi JX, Zhang HQ (2023) In-situ observation of microcrack initiation and damage nucleation modes on the HAZ of laser-welded DP1180 joint. J Mater Sci Tech 148:138–149. https://doi.org/10.1016/j.jmst.2023.01.001

    Article  CAS  Google Scholar 

  20. Bignozzi MC, Calcinelli L, Carati M, Ceschini L, Chiavari C, Masi G, Morri A (2020) Effect of heat treatment conditions on retained austenite and corrosion resistance of the X190CrVMo20-4-1 stainless steel. Met Mater Int 26:1318–1328. https://doi.org/10.1007/s12540-019-00384-2

    Article  CAS  Google Scholar 

  21. Esmailzadeh S, Aliofkhazraei M, Sarlak H (2018) Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Prot Met Phys Chem 54:976–989. https://doi.org/10.1134/S207020511805026X

    Article  CAS  Google Scholar 

  22. Lin X, Liu W, Wu F, Xu C, Dou J, Lu M (2015) Effect of O2 on corrosion of 3Cr steel in high temperature and high pressure CO2-O2 environment. Appl Surf Sci 329:104–115. https://doi.org/10.1016/j.apsusc.2014.12.109

    Article  CAS  Google Scholar 

  23. Lu HJ, Xu WF, Wang H, Wang XZ (2023) Microstructure evolution and its effect on the corrosion of dissimilar aluminum alloys friction stir welding joint. Corros Sci 220:111249. https://doi.org/10.1016/j.corsci.2023.111249

    Article  CAS  Google Scholar 

  24. Ojarand J, Priidel E, Min M (2022) Derivation of bioimpedance model data utilizing a compact analyzer and two capacitive electrodes: a forearm example. IEEE Trans Biomed Circ S 16(5):891–901. https://doi.org/10.1109/TBCAS.2022.3206666

    Article  Google Scholar 

  25. Zuo Y, Pang R, Li W, Xiong JP, Tang YM (2008) The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corros Sci 50(12):3322–3328. https://doi.org/10.1016/j.corsci.2008.08.049

    Article  CAS  Google Scholar 

  26. Zhu G, Cui X, Zhang Y, Chen S, Dong M, Liu H, Shao Q, Ding T, Wu S, Guo Z (2019) Poly (vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polym 172:415–422. https://doi.org/10.1016/j.polymer.2019.03.056

    Article  CAS  Google Scholar 

  27. Liu L, Li Y, Wang F (2010) Electrochemical corrosion behavior of nanocrystalline materials—a review. J Mater Sci Tech 26(1):1–14. https://doi.org/10.1016/S1005-0302(10)60001-1

    Article  Google Scholar 

  28. Ibrahim MAM, El Abd, Rehim SS, Hamza MM (2009) Corrosion behavior of some austenitic stainless steels in chloride environments. Mater Chem Phys 115(1):80–85. https://doi.org/10.1016/j.matchemphys.2008.11.016

    Article  CAS  Google Scholar 

  29. Mittal R, Sidhu BS (2015) Oil-Ash corrosion resistance of dissimilar T22/T91 welded joint of super heater tubes. J Mater Eng Perform 24:670–682. https://doi.org/10.1007/s11665-014-1338-4

    Article  CAS  Google Scholar 

  30. Fu J, Li N, Zhou Q, Guo P (2015) Impacts of applied stresses on high temperature corrosion behavior of HR3C in molten salt. Oxid Met 83:317–333. https://doi.org/10.1007/s11085-014-9522-3

    Article  CAS  Google Scholar 

  31. Liu C, Gao Y, Chong K, Guo F, Wu D, Zou Y (2023) Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNbx high-entropy alloys in chloride ion environment. J Alloys Compd 935:168013. https://doi.org/10.1016/j.jallcom.2022.168013

    Article  CAS  Google Scholar 

  32. Wu P, Zhu X, Xu L, Peng W, Zhao G (2020) Effect of stray current coupled with chloride concentration and temperature on the corrosion resistance of a steel passivation film. Electrochem Commun 118:106793. https://doi.org/10.1016/j.elecom.2020.106793

    Article  CAS  Google Scholar 

  33. Mahesh BV, Raman RKS, Koch CC (2012) Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys. J Mater Sci 47:7735–7743. https://doi.org/10.1007/s10853-012-6686-6

    Article  CAS  Google Scholar 

  34. Liu M, Cheng X, Li X, Pan Y, Li J (2016) Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution. Appl Surf Sci 389:1182–1191. https://doi.org/10.1016/j.apsusc.2016.08.074

    Article  CAS  Google Scholar 

  35. Gui Y, Zheng ZJ, Gao Y (2016) The bi-layer structure and the higher compactness of a passive film on nanocrystalline 304 stainless steel. Thin Solid Films 599:64–71. https://doi.org/10.1016/j.tsf.2015.12.039

    Article  CAS  Google Scholar 

  36. Machet A, Galtayries A, Zanna S, Klein L, Naurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P (2004) XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy. Electrochim Acta 49(22–23):3957–3964. https://doi.org/10.1016/j.electacta.2004.04.032

    Article  CAS  Google Scholar 

  37. Lucio-Garcia MA, Gonzalez-Rodriguez JG, Casales M, Martinez L, Chacon-Nava JG, Neri-Flores MA, Martinez-Villafane A (2009) Effect of heat treatment on H2S corrosion of a micro-alloyed C-Mn steel. Corros Sci 51(10):2380–2386. https://doi.org/10.1016/j.corsci.2009.06.022

    Article  CAS  Google Scholar 

  38. Kumar S, Shahi AS, Sharma V, Malhotra D (2021) Effect of welding heat input and post-weld thermal aging on the sensitization and pitting corrosion behavior of AISI 304L stainless steel butt welds. J Mater Eng Perform 30:1619–1640. https://doi.org/10.1007/s11665-021-05454-4

    Article  CAS  Google Scholar 

  39. Min S, Liu H, Wang J, Hou J (2021) Early oxidation behavior of Ni-based Alloy 690 in simulated pressurized water reactor environment with varying surface conditions. Corros Commun 4:68–81. https://doi.org/10.1016/j.corcom.2021.10.004

    Article  Google Scholar 

  40. Sun H, Wu X, Han EH (2009) Effects of temperature on the protective property, structure and composition of the oxide film on Alloy 625. Corros Sci 51(11):2565–2572. https://doi.org/10.1016/j.corsci.2009.06.04

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52175286), the Project of Construction and Support for high-level Innovative Teams of Beijing Municipal Institutions (BPHR20220110), and Undergraduate Research Training Program (2023J00005, 2023J00058). The authors sincerely appreciate the above financial support.

Author information

Authors and Affiliations

Authors

Contributions

MS: Conceptualization, Formal analysis, Writing—Original Draft, Visualization. HW: Investigation, Validation. QW: Resources, Experiment. JY: Resources, Experiment. JK: Writing—Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Ju Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not required.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, M., Wang, H., Wang, Q. et al. Effect of microstructure on initial corrosion behavior of T92/HR3C dissimilar metal welded joint. J Mater Sci 58, 17648–17663 (2023). https://doi.org/10.1007/s10853-023-09139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09139-2

Navigation