Skip to main content
Log in

Effect of Welding Heat Input and Post-weld Thermal Aging on the Sensitization and Pitting Corrosion Behavior of AISI 304L Stainless Steel Butt Welds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Heat input for gas tungsten arc welding process was varied at three different levels to fabricate three AISI 304L stainless steel welds to examine the influence of variable arc energy input on their sensitization and pitting performance. Welds were subjected to post-weld thermal aging treatments comprising of low-temperature sensitization of 500 °C for 1, 5, and 11 days and classical sensitization of 650 °C for 1, 12, and 24 h. Different morphologies of ferrite present in the fusion zone and the degree of the coarsening of grains in the heat-affected zone (HAZ) of the weldments under different aging conditions influenced their tendencies for carbide formation, which consequentially affected their sensitization and pitting corrosion behavior significantly. Lower heat input welds having lathy morphology of δ-ferrite in the fusion zone along with less coarsened HAZ exhibited a lesser degree of carbide precipitation. They hence showed a lower degree of sensitization (DOS), which accounted for higher pitting potential (Epitt). However higher heat input welds having vermicular morphology of δ-ferrite in the fusion zone and relatively higher grain coarsened HAZ promoted a higher degree of carbide precipitation, and thus accounted for the higher value of DOS and lower pitting potential (Epitt).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.J. Sedric, Corrosion of Stainless Steels, 2nd ed. Wiley, New York, 1996.

    Google Scholar 

  2. M. Finsgar and I. Milosev, Corrosion Behavior of Stainless Steels in Aqueous Solutions of Methanesulfonic Acid, Corros. Sci., 2010, 52, p 2430–2438.

    Article  CAS  Google Scholar 

  3. W. Kuang, E.H. Han, X. Wu and J. Rao, Microstructural Characteristics of the Oxide Scale Formed on 304 Stainless Steel in Oxygenated High Temperature Water, Corros. Sci., 2010, 52, p 3654–3660.

    Article  CAS  Google Scholar 

  4. S.M. Bruemmer and L.A. Charlot, Development of Grain Boundary Chromium Depletion in Type 304 and 316 Stainless Steels, Scr. Metall. Mater., 1986, 20, p 1019–1024.

    Article  CAS  Google Scholar 

  5. W.E. White, Observations of the Influence of Microstructure on Corrosion of Welded Conventional and Stainless Steels, Mater. Charact., 1992, 28, p 349–358.

    Article  CAS  Google Scholar 

  6. M.J. Povich, Low Temperature Sensitization of Type 304 Stainless Steel, Corrosion, 1978, 34, p 60–65.

    Article  CAS  Google Scholar 

  7. S.M. Bruemmer, L.A. Charlot, A. Bagchi and D.G. Atteridge, Influence of Grain Boundary Carbides and Phosphorus Segregation on the Low Temperature Intergranular Embrittlement of Type 316 Stainless Steel, Scripta. Metall. Mater., 1989, 23, p 1549–1554.

    Article  CAS  Google Scholar 

  8. E. Folkhard, Welding Metallurgy of Stainless Steels, Springer, Vienna, 1988.

    Book  Google Scholar 

  9. U.K. Mudali, R.K. Dayal, J.B. Gnanamoorthy and P. Rodriguez, Influence of Thermal Aging on the Intergranular Corrosion Resistance of Types 304 LN and 316 LN Stainless Steels, Metall. Mater. Trans. A, 1996, 27A, p 2881–2887.

    Article  CAS  Google Scholar 

  10. R. Beneke and R.F. Sandenbergh, The Influence of Nitrogen and Molybdenum on the Sensitization Properties of Low-Carbon Austenitic Stainless Steels, Corros. Sci., 1989, 29, p 543–555.

    Article  CAS  Google Scholar 

  11. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal and E. Matykina, Pitting Corrosion Behaviour of Austenitic Stainless Steels-Combining Effects of Mn and Mo Additions, Corros. Sci., 2008, 50, p 1796–1806.

    Article  CAS  Google Scholar 

  12. H.Y. Ha and H.S. Kwon, Effects of Cr2N on the Pitting Corrosion of High Nitrogen Stainless Steels, Elertrochim. Acta, 2007, 52, p 2175–2180.

    Article  CAS  Google Scholar 

  13. H.-B. Li, Z.-H. Jiang, Y. Yang, Y. Cao and Z.-R. Zhang, Pitting Corrosion and Crevice Corrosion Behaviors of High Nitrogen Stainless Steels, Int. J. Min. Met. Mater., 2009, 16(5), p 517–524.

    Article  CAS  Google Scholar 

  14. R. Singh, S.G. Chowdhury, B.R. Kumar, S.K. Das, P.K. De and I. Chattoraj, The Importance of Grain Size Relative to Grain Boundary Character on the Sensitization of Metastable Austenitic Stainless Steel, Scr. Mater., 2007, 57, p 185–188.

    Article  CAS  Google Scholar 

  15. A.D. Schino and J.M. Kenny, Effect of Grain Size on the Corrosion Resistance of a High Nitrogen-Low Nickel Austenitic Stainless Steel, J. Mater. Sci. Lett., 2002, 21, p 1969–1971.

    Article  Google Scholar 

  16. Y.J. Oh and J.H. Hong, Nitrogen Effect on Precipitation and Sensitization in Cold-Worked Type 316 L (N) Stainless Steels, J. Nucl. Mater., 2000, 278, p 242–250.

    Article  CAS  Google Scholar 

  17. R. Singh, Influence of Cold Rolling on Sensitization and Intergranular Stress Corrosion Cracking of AISI 304 Aged at 500°C, J. Mater. Process. Tech., 2008, 206, p 286–293.

    Article  CAS  Google Scholar 

  18. S. Mannepalli, R.K. Gupta, A.V. Kumar, N. Parvathavarthini and U.K. Mudali, Influence of Prior Deformation on Sensitization Kinetics of Nitrogen Alloyed 316L Stainless Steels, J. Mater. Eng. Perform., 2015, 24, p 1848–1855.

    Article  CAS  Google Scholar 

  19. L. Peguet, B. Malki and B. Baroux, Influence of Cold Working on the Pitting Corrosion Resistance of Stainless Steels, Corros. Sci., 2007, 49, p 1933–1948.

    Article  CAS  Google Scholar 

  20. Y. Fu, X. Wu, E.-H. Han, W. Ke, K. Yang and Z. Jiang, Effects of Cold Work and Sensitization Treatment on the Corrosion Resistance of High Nitrogen Stainless Steel in Chloride Solutions, Elertrochim. Acta, 2009, 54, p 1618–1629.

    Article  CAS  Google Scholar 

  21. J. Moon, H.-Y. Ha and T.-H. Lee, Corrosion Behavior of High Heat Input Welded Heat-Affected Zone of Ni-Free High-Nitrogen Fe-18Cr-10Mn-N Austenitic Stainless Steels, Mater. Charact., 2013, 82, p 113–119.

    Article  CAS  Google Scholar 

  22. J. Moon, H.-Y. Ha, T.-H. Lee and C. Lee, Different Aspects of Pitting Corrosion in the Weld Heat-Affected Zone of High-Nitrogen Fe-18Cr-10Mn-N Steel, Mater. Chem. Phys., 2013, 142, p 556–563.

    Article  CAS  Google Scholar 

  23. Y. Cui and C.D. Lunding, Evaluation of Initial Corrosion Location in E316 Austenitic Stainless Steel Weld Metals, Mater. Lett., 2005, 59, p 1542–1546.

    Article  CAS  Google Scholar 

  24. Y. Cui and C.D. Lunding, Austenite-Preferential Corrosion Attack in 316 Austenitic Stainless Steel Weld Metals, Mater. Des., 2007, 28, p 324–328.

    Article  CAS  Google Scholar 

  25. M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar and A. Saatchi, Effect of TIG Welding on Corrosion Behaviour of 316L Stainless Steel, Mater. Lett., 2007, 61, p 2343–2346.

    Article  CAS  Google Scholar 

  26. C.-M. Lin, H.-L. Tsai, C.-D. Cheng and C. Yang, Effect of Repeated Weld-Repairs on Microstructure, Texture, Impact Properties and Corrosion Properties of AISI 304L Stainless Steel, Eng. Fail. Anal., 2012, 21, p 9–20.

    Article  CAS  Google Scholar 

  27. T.A. Mozhi, M.C. Juhas and B.E. Wilde, Modeling Low Temperature Sensitization of Austenitic Stainless Steels, Scr. Metall. Mater., 1987, 21, p 1547–1552.

    Article  CAS  Google Scholar 

  28. V. Moura, Y.A. Kina, S.S.M. Tavares, M.M.S.G. Faria and F.B. Mainier, Investigation of Cracks and Sensitization in an AISI304L Stainless Steel Exposed to 500–600°C, Eng. Fail. Anal., 2009, 16, p 545–551.

    Article  CAS  Google Scholar 

  29. G. Suresh, T. Nandakumar and A. Viswanath, Effect of Low-Temperature Sensitization on the Corrosion Behavior of AISI 304L SS Weld Metal in Simulated Groundwater, J. Mater. Eng. Perform., 2018, 27, p 2484–2491.

    Article  CAS  Google Scholar 

  30. ASTM International E407-07: Standard Practice for Microetching Metals and Alloys.

  31. N. Lopez, M. Cid, M. Puiggali, I. Azkarate and A. Pelayo, Application of Double Loop Electrochemical Potentiodynamic Reactivation Test to Austenitic and Duplex Stainless Steels, Mater. Sci. Eng. A, 1997, 229, p 123–128.

    Article  Google Scholar 

  32. V. Cihal and R. Stefec, On the Development of the Electrochemical Potentiokinetic Method, Elertrochim. Acta, 2001, 46, p 3867–3877.

    Article  CAS  Google Scholar 

  33. M. Momeni, M.H. Moayed and A. Davoodi, Tuning DOS Measuring Parameters Based on Double-Loop EPR in H2SO4 Containing KSCN by Taguchi Method, Corros. Sci., 2010, 52, p 2653–2660.

    Article  CAS  Google Scholar 

  34. P.D. Tiedra, O. Martin and M. Lopez, Combined Effect of Resistance Spot Welding and Post-Welding Sensitization on the Degree of Sensitization of AISI 304 Stainless Steel, Corros. Sci., 2011, 53, p 2670–2675.

    Article  CAS  Google Scholar 

  35. V. Kain, K. Chandra, K.N. Adhe and P.K. De, Effect of Cold Work on Low-Temperature Sensitization Behaviour of Austenitic Stainless Steels, J. Nucl. Mater., 2004, 334, p 115–132.

    Article  CAS  Google Scholar 

  36. ASTM International G5-13: Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements.

  37. X. Wu, Y. Fu, J. Huang, E. Han, W. Ke, K. Yang and Z. Jiang, Investigation of Pitting Corrosion of Nickel-Free and Manganese-Alloyed High Nitrogen Stainless Steels, J. Mater. Eng. Perform., 2009, 18(3), p 287–298.

    Article  CAS  Google Scholar 

  38. M. Hazra, K.S. Rao and G.M. Reddy, Friction Welding of a Nickel Free High Nitrogen Steel: Influence of Forge Force on Microstructure, Mechanical Properties and Pitting Corrosion Resistance, J. Mater. Res. Tech., 2014, 3(1), p 90–100.

    Article  CAS  Google Scholar 

  39. D. Malhotra and A.S. Shahi, Metallurgical, Fatigue and Pitting Corrosion Behavior of AISI 316 Joints Welded with Nb-Based Stabilized Steel Filler, Metall. Mater. Trans. A, 2020, 51, p 1647–1664.

    Article  CAS  Google Scholar 

  40. U.K. Mudali and R.K. Dayal, Pitting Corrosion Resistance of as Welded and Thermally Aged Nitrogen Containing Type 316 Stainless Steel Weld Metal, Mater. Sci. Tech., 2000, 16, p 393–398.

    Article  CAS  Google Scholar 

  41. U.K. Mudali, R.K. Dayal, J.B. Gnanamoorthy and P. Rodriguez, Relationship Between Pitting and Intergranular Corrosion of Nitrogen-Bearing Austenitic Stainless Steels, ISIJ Int., 1996, 36(7), p 799–806.

    Article  CAS  Google Scholar 

  42. C. Gracia, M.P. de Tiedra, Y. Blanco, O. Martin and F. Martin, Intergranular Corrosion of Welded Joints of Austenitic Stainless Steels Studied by Using an Electrochemical Minicell, Corros. Sci., 2008, 50, p 2390–2397.

    Article  CAS  Google Scholar 

  43. A. Yae Kina, V.M. Souza, S.S.M. Tavares, J.M. Pardal and J.A. Souza, Microstructure and Intergranular Corrosion Resistance Evaluation of AISI 304 Steel for High Temperature Service, Mater. Charact., 2008, 59, p 651–655.

    Article  CAS  Google Scholar 

  44. A.D. Schino and J.M. Kenny, Effects of the Grain Size on the Corrosion Behaviour of Refined AISI 304 Stainless Steel, J. Mater. Sci. Lett., 2002, 21, p 1631–1634.

    Article  Google Scholar 

  45. J.M. Aquino, C.A. Della Rovere and S.E. Kuri, Intergranular Corrosion Susceptibility in Supermartenistic Stainless Steel Weldments, Corros. Sci., 2009, 51, p 2316–2323.

    Article  CAS  Google Scholar 

  46. J.H. Potgieter, P.A. Olubambi, L. Cornish, C.N. Machio and E.M. Sherif, Influence of Nickel Additions on the Corrosion Behavior of Low Nitrogen 22% Cr Series Duplex Stainless Steels, Corros. Sci., 2008, 50(9), p 2572–2579.

    Article  CAS  Google Scholar 

  47. J. Moon, H. Ha, S. Park, J. Loo, J. Jang, C. Lee, H. Han and H. Hong, Effect of Mo and Cr Additions on the Microstructure, Mechanical Properties and Pitting Corrosion Resistance of Austenitic Fe-30Mn-10.5Al-1.1C Lightweight Steels, J. Alloys Compd., 2019, 775, p 1136–1146.

    Article  CAS  Google Scholar 

  48. Y. Zhang, H. Luo, Q. Zhong, H. Yu and J. Lv, Characterization of Passive Films Formed on As-Received and Sensitized AISI 304 Stainless Steel, Chin. J. Mech. Eng., 2019, 32–27, p 1–12.

    Article  Google Scholar 

  49. C.M. Abreu, M.J. Cristobal, R. Losada, X.R. Novoa, G. Pena and M.C. Perez, The Effect of Ni in the Electrochemical Properties of Oxide Layers Grown on Stainless Steels, Electrochim. Acta, 2006, 51(15), p 2991–3000.

    Article  CAS  Google Scholar 

  50. S. Marcelin, N. Pebera and S. Regnier, Electrochemical Characterisation of Martensitic Stainless Steel in an Neutral Chloride Solution, Electrochim. Acta, 2013, 87, p 32–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The infrastructural support, especially metallography and corrosion testing facilities, extended by the Welding Metallurgy Laboratory, Mechanical Engineering Department, S.L.I.E.T., Longowal, Sangrur (Deemed to be University), Punjab, India, is gratefully acknowledged. A special thanks to Amrindra Pal for providing the support to finalize the art work in the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Shahi, A.S., Sharma, V. et al. Effect of Welding Heat Input and Post-weld Thermal Aging on the Sensitization and Pitting Corrosion Behavior of AISI 304L Stainless Steel Butt Welds. J. of Materi Eng and Perform 30, 1619–1640 (2021). https://doi.org/10.1007/s11665-021-05454-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05454-4

Keywords

Navigation