Skip to main content
Log in

Sliding wear resistance and residual stresses of parts repaired by laser metal deposition

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Large temperature gradients inherent to additive manufacturing (AM) processes induce large residual stress (RS) in the final part. Because RS can influence the tribological properties, this study focuses on the relationship between wear sliding properties and RS in IN718 coatings. Such coatings were deposited with a Laser metal deposition (LMD) machine using two different scanning strategies. The wear resistance and RS state were investigated after surface milling. RS were measured before and after wear tests on a reciprocating sliding test apparatus. Two different X-ray diffraction techniques were employed to measure the surface and subsurface state RS: Laboratory Energy Dispersive X-ray Diffraction (LEDXD) and Synchrotron X-ray Energy Dispersive Diffraction (SXEDD). Due to the milling process, the coatings show similar depth distributions of RS from 22 to 92 µm depth, but exhibit different magnitudes depending on the scanning strategy used. Reciprocating sliding wear tests induced high compressive residual stresses that erased the initial RS state, and a similar wear behavior was observed in the two samples. These samples possess similar texture and grain morphology. This demonstrates that the influence of RS on wear resistance is a second-order effect. Nevertheless, it was observed that RS can still impact the wear performance at the early testing stages of the repaired parts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Liu P, Quan Y, Wan J, Yu L (2021) Experimental investigation on the wear and damage behaviors of machined wheel-rail materials under dry sliding conditions. Materials 14(3):1–21. https://doi.org/10.3390/ma14030540

    Article  CAS  Google Scholar 

  2. Tejero-Martin D, Rezvani Rad M, McDonald A, Hussain T (2019) Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings, vol. 28, No. (4). Springer, US

  3. Curry N, Markocsan N, Östergren L, Li XH, Dorfman M (2013) Evaluation of the lifetime and thermal conductivity of dysprosia-stabilized thermal barrier coating systems. J Therm Spray Technol 22(6):864–872. https://doi.org/10.1007/s11666-013-9932-9

    Article  CAS  Google Scholar 

  4. Graf B, Gumenyuk A, Rethmeier M (2012) Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys Procedia 39:376–381. https://doi.org/10.1016/j.phpro.2012.10.051

    Article  CAS  Google Scholar 

  5. Rahito DAW, Azman AH (2019) Additive manufacturing for repair and restoration in remanufacturing: an overview from object design and systems perspectives. Processes 7(11):802. https://doi.org/10.3390/pr7110802

    Article  CAS  Google Scholar 

  6. Li L (2000) Advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34(4–6):231–253. https://doi.org/10.1016/S0143-8166(00)00066-X

    Article  Google Scholar 

  7. Prager M, Shira CS (1968) Welding of precipitation-hardening nickel- base alloys(Welding precipitation hardenable Ni base alloys noting heat treatment, microfissuring, strain age cracking and other intricacies). Weld Res Counc Bull 128

  8. Sangid MD et al (2018) Role of heat treatment and build orientation in the microstructure sensitive deformation characteristics of IN718 produced via SLM additive manufacturing. Addit Manuf 22:479–496. https://doi.org/10.1016/j.addma.2018.04.032

    Article  CAS  Google Scholar 

  9. Wilson JM, Piya C, Shin YC, Zhao F, Ramani K (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178. https://doi.org/10.1016/j.jclepro.2014.05.084

    Article  Google Scholar 

  10. Bi G, Gasser A (2011) Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Phys Procedia 12:402–409. https://doi.org/10.1016/j.phpro.2011.03.051

    Article  CAS  Google Scholar 

  11. Ünal-Saewe T, Gahn L, Kittel J, Gasser A, Schleifenbaum JH (2020) Process development for tip repair of complex shaped turbine blades with IN718. Procedia Manuf 47(2019):1050–1057. https://doi.org/10.1016/j.promfg.2020.04.114

    Article  Google Scholar 

  12. Chen S, Gao H, Zhang Y, Wu Q, Gao Z, Zhou X (2022) Review on residual stresses in metal additive manufacturing: formation mechanisms, parameter dependencies, prediction and control approaches. J Mater Res Technol 17:2950–2974. https://doi.org/10.1016/j.jmrt.2022.02.054

    Article  CAS  Google Scholar 

  13. Wu X, Zhu W, He Y (2021) Deformation prediction and experimental study of 316l stainless steel thin-walled parts processed by additive-subtractive hybrid manufacturing. Materials 14(19):5582. https://doi.org/10.3390/ma14195582

    Article  CAS  Google Scholar 

  14. Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth JP (2014) Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J Manuf Sci Eng Trans ASME 136(6):061026. https://doi.org/10.1115/1.4028513

    Article  Google Scholar 

  15. Li C, Liu ZY, Fang XY, Guo YB (2018) Residual stress in metal additive manufacturing. Procedia CIRP 71:348–353. https://doi.org/10.1016/j.procir.2018.05.039

    Article  Google Scholar 

  16. Beevers E et al (2018) Fatigue properties and material characteristics of additively manufactured AlSi10Mg–effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties. Int J Fatigue 117:148–162. https://doi.org/10.1016/j.ijfatigue.2018.08.023

    Article  CAS  Google Scholar 

  17. Pant P et al (2022) A study of the influence of novel scan strategies on residual stress and microstructure of L-shaped LPBF IN718 samples. Mater Des 214:110386. https://doi.org/10.1016/j.matdes.2022.110386

    Article  CAS  Google Scholar 

  18. Cheng B, Shrestha S, Chou K (2016) Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit Manuf 12:240–251. https://doi.org/10.1016/j.addma.2016.05.007

    Article  Google Scholar 

  19. Carraturo M, Lane B, Yeung H, Kollmannsberger S, Reali A, Auricchio F (2020) Numerical evaluation of advanced laser control strategies influence on residual stresses for laser powder bed fusion systems. Integr Mater Manuf Innov 9(0123456789):435–445. https://doi.org/10.1007/s40192-020-00191-3

    Article  Google Scholar 

  20. Riccardo G, Rivolta B, Gorla C, Concli F (2021) Cyclic behavior and fatigue resistance of AISI H11 and AISI H13 tool steels. Eng Fail Anal 121:105096. https://doi.org/10.1016/j.engfailanal.2020.105096

    Article  CAS  Google Scholar 

  21. Telasang G, Dutta Majumdar J, Wasekar N, Padmanabham G, Manna I (2015) Microstructure and mechanical properties of laser clad and post-cladding Tempered AISI H13 tool steel. Metall Mater Trans A Phys Metall Mater Sci 46(5):2309–2321. https://doi.org/10.1007/s11661-015-2757-z

    Article  CAS  Google Scholar 

  22. Tomaz Í, Martins M, Costa H, Bastos I, Fonseca M (2020) Influence of residual stress on the sliding wear of aisi 4340 steel. Rev Mater 25(2):1–8. https://doi.org/10.1590/S1517-707620200002.1018

    Article  Google Scholar 

  23. Yin MG, Cai ZB, Zhang ZX, Yue W (2020) Effect of ultrasonic surface rolling process on impact-sliding wear behavior of the 690 alloy. Tribol Int 147:105600. https://doi.org/10.1016/j.triboint.2019.02.008

    Article  CAS  Google Scholar 

  24. Yang Y, Zhu Y, Khonsari MM, Yang H (2019) Wear anisotropy of selective laser melted 316L stainless steel. Wear 428–429:376–386. https://doi.org/10.1016/j.wear.2019.04.001

    Article  CAS  Google Scholar 

  25. Yang Y, Li X, Khonsari MM, Zhu Y, Yang H (2020) On enhancing surface wear resistance via rotating grains during selective laser melting. Addit Manuf 36:101583. https://doi.org/10.1016/j.addma.2020.101583

    Article  CAS  Google Scholar 

  26. Bahshwan M, Myant CW, Reddyhoff T, Pham MS (2020) The role of microstructure on wear mechanisms and anisotropy of additively manufactured 316L stainless steel in dry sliding. Mater Des 196:109076. https://doi.org/10.1016/j.matdes.2020.109076

    Article  CAS  Google Scholar 

  27. Oxford Instruments, “Oxford Instruments.” https://www.oxinst.com/

  28. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  29. Roell Z (2023) Zwick Roell. https://www.zwickroell.com/products/hardness-testing-machines/

  30. Farla R et al (2022) Extreme conditions research using the large-volume press at the P61B endstation, PETRA III. J Synchrotron Radiat 29(2):409–423. https://doi.org/10.1107/S1600577522001047

    Article  CAS  Google Scholar 

  31. Hubbell JH, Seltzer SM (2004) NIST standard reference database 126. Radiation Physics Division, PML, NIST, https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients

  32. Dye D, Stone HJ, Reed RC (2001) Intergranular and interphase microstresses. Curr Opin Solid State Mater Sci 5(1):31–37. https://doi.org/10.1016/S1359-0286(00)00019-X

    Article  CAS  Google Scholar 

  33. Macherauch E (1961) Das Sin^ 2ψ Verfahren von Rontgenographische Eigenspannungen. Z Angew Phys 13:305–312

    CAS  Google Scholar 

  34. Fitzpatrick ME, Fry AT, Holdway P, Kandil FA, Shackleton J, Suominen L (2005) Determination of residual stresses by X-ray diffraction

  35. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - J Appl Math Mech/Zeitschrift für Angew Math und Mech 9(1):49–58. https://doi.org/10.1002/zamm.19290090104

    Article  CAS  Google Scholar 

  36. Haldipur P (2004) Estimation of single-crystal elastic constants from ultrasonic measurements on polycrystalline specimens. AIP Conf Proc 1061(2004):1061–1068. https://doi.org/10.1063/1.1711735

    Article  Google Scholar 

  37. Wansleben M et al (2019) Photon flux determination of a liquid-metal jet X-ray source by means of photon scattering. J Anal At Spectrom 34(7):1497–1502. https://doi.org/10.1039/C9JA00127A

    Article  CAS  Google Scholar 

  38. Apel D, Genzel M, Meixner M, Boin M, Klaus M, Genzel C (2020) EDDIDAT: a graphical user interface for the analysis of energy-dispersive diffraction data. J Appl Crystallogr 53(2011):1130–1137. https://doi.org/10.1107/S1600576720005506

    Article  CAS  Google Scholar 

  39. Bruker (2023) Bruker. https://www.bruker.com/en/products-and-solutions/test-and-measurement/3d-optical-profilers.html

  40. Tucho WM, Cuvillier P, Sjolyst-Kverneland A, Hansen V (2017) Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng A 689:220–232. https://doi.org/10.1016/j.msea.2017.02.062

    Article  CAS  Google Scholar 

  41. Serrano-Munoz I et al (2020) The residual stress in as-built laser powder bed fusion IN718 alloy as a consequence of the scanning strategy induced microstructure. Sci Rep 10(1):1–15. https://doi.org/10.1038/s41598-020-71112-9

    Article  CAS  Google Scholar 

  42. David SA, Vitek JM (1989) Correlation between solidification parameters and weld microstructures. Int Mater Rev 34(1):213–245. https://doi.org/10.1179/imr.1989.34.1.213

    Article  CAS  Google Scholar 

  43. Xiong F et al (2021) Grain growth prediction in selective electron beam melting of Ti-6Al-4V with a cellular automaton method. Mater Des 199:109410. https://doi.org/10.1016/j.matdes.2020.109410

    Article  CAS  Google Scholar 

  44. Hertz H (1882) Ueber die Berührung fester elastischer Körper. J für die reine und Angew Math 92:156–171

    Google Scholar 

  45. Li X et al (2019) Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process. Mater Des 180:107915. https://doi.org/10.1016/j.matdes.2019.107915

    Article  CAS  Google Scholar 

  46. Fayed EM, Saadati M, Shahriari D, Brailovski V, Jahazi M, Medraj M (2021) Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion. Sci Rep 11(1):1–17. https://doi.org/10.1038/s41598-021-81618-5

    Article  CAS  Google Scholar 

  47. Bertsch KM, Meric de Bellefon G, Kuehl B, Thoma DJ (2020) Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L. Acta Mater 199:19–33. https://doi.org/10.1016/j.actamat.2020.07.063

    Article  CAS  Google Scholar 

  48. Moat RJ, Pinkerton AJ, Li L, Withers PJ, Preuss M (2011) Residual stresses in laser direct metal deposited Waspaloy. Mater Sci Eng A 528(6):2288–2298. https://doi.org/10.1016/j.msea.2010.12.010

    Article  CAS  Google Scholar 

  49. Weber D et al (2021) Analysis of machining-induced residual stresses of milled aluminum workpieces, their repeatability, and their resulting distortion. Int J Adv Manuf Technol 115(4):1089–1110. https://doi.org/10.1007/s00170-021-07171-7

    Article  Google Scholar 

  50. Yang Y, Gong Y, Qu S, Xin B, Xu Y, Qi Y (2019) Additive/subtractive hybrid manufacturing of 316L stainless steel powder: densification, microhardness and residual stress. J Mech Sci Technol 33(12):5797–5807. https://doi.org/10.1007/s12206-019-1126-z

    Article  Google Scholar 

  51. Careri F, Imbrogno S, Umbrello D, Outeiro JC, Batista AC (2021) A residual stress prediction of machining IN718 produced by direct energy deposition. Procedia CIRP 102:13–18. https://doi.org/10.1016/j.procir.2021.09.003

    Article  Google Scholar 

  52. Liu Y et al (2021) Numerical and experimental investigation of tool geometry effect on residual stresses in orthogonal machining of Inconel 718. Simul Model Pract Theor 106:102187. https://doi.org/10.1016/j.simpat.2020.102187

    Article  Google Scholar 

  53. Serrano-Munoz I et al (2021) Scanning manufacturing parameters determining the residual stress state in LPBF IN718 small parts. Adv Eng Mater. https://doi.org/10.1002/adem.202100158

    Article  Google Scholar 

  54. Schröder J et al (2021) Diffraction-based residual stress characterization in laser additive manufacturing of metals. Metals 11:1–34. https://doi.org/10.3390/met11111830

    Article  CAS  Google Scholar 

  55. Ho JW, Noyan C, Cohen JB, Khanna VD, Eliezer Z (1982) Residual stresses and sliding wear. Wear 84:183–202. https://doi.org/10.1016/0043-1648(83)90263-6

    Article  Google Scholar 

  56. Mairey D, Sprauel JE, Chuard M, Mignot J (1985) Study of residual stresses induced by sliding wear. J Tribol 107(2):195–199. https://doi.org/10.1115/1.3261019

    Article  Google Scholar 

  57. Fereidouni H, Akbarzadeh S, Khonsari MM (2020) The relation between subsurface stresses and useful wear life in sliding contacts. Tribol Lett 68(1):1–13. https://doi.org/10.1007/s11249-019-1246-8

    Article  Google Scholar 

  58. Li H, Ramezani M, Chen ZW (2019) Dry sliding wear performance and behaviour of powder bed fusion processed Ti–6Al–4V alloy. Wear 440–441:203103. https://doi.org/10.1016/j.wear.2019.203103

    Article  CAS  Google Scholar 

  59. Bahshwan M, Gee M, Nunn J, Myant CW, Reddyhoff T (2021) In situ observation of anisotropic tribological contact evolution in 316L steel formed by selective laser melting. Wear 490–491:204193. https://doi.org/10.1016/j.wear.2021.204193

    Article  CAS  Google Scholar 

  60. Nadammal N et al (2021) Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Addit Manuf 38:101792. https://doi.org/10.1016/j.addma.2020.101792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRAIII. Beamtime was allocated for proposal I-2022025.

Funding

This research work was founded by the Direction Générale de l’Armement (DGA, France) and by the Société Générale des Chemins de fer Français (SNCF, France).

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization and the manufacturing of the samples were done by TZ. The characterization of the materials was performed by TZ. The XRD measurements were performed by TZ, ISM, TM, GAF, and SD. TZ, ISM, GB, EC and TM evaluated and discussed the XRD results. TZ and ISM wrote the first draft. The manuscript was revised by EC, VF, GAF, SD, ISM, and GB. The funding acquisition was done by EC.

Corresponding authors

Correspondence to Théo Zurcher or Eric Charkaluk.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zurcher, T., Serrano-Munoz, I., Mishurova, T. et al. Sliding wear resistance and residual stresses of parts repaired by laser metal deposition. J Mater Sci 58, 17890–17907 (2023). https://doi.org/10.1007/s10853-023-09129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09129-4

Navigation