Skip to main content
Log in

The Relation Between Subsurface Stresses and Useful Wear Life in Sliding Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Equations for quantifying the subsurface shear stress in dry point contact are utilized to obtain the value and location of the maximum subsurface shear stress. A series of experiments using a pin-on-disk tribometer is conducted on run-in specimens made of steel, brass, and aluminum, and the weight loss and wear rate of the specimen are measured. The results reveal a correlation between the depth of the maximum subsurface shear stress obtained from the model and the measured wear rate. It is shown that at the onset of failure, the friction coefficient suddenly increases. This increase affects the location of maximum subsurface shear stress by pushing it toward the surface and producing wear particles. SEM images of all three friction-pair tested reveal that the size of the wear particles is directly related to the applied load.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Archard, J.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)

    Article  Google Scholar 

  2. Khruschov, M.: Resistance of metals to wear by abrasion, as related to hardness. Proc. Conf, Lubrication and Wear, IME (1957)

  3. Suh, N.P.: The delamination theory of wear. Wear 25(1), 111–124 (1973)

    Article  CAS  Google Scholar 

  4. Miner, M.: Cumulative fatigue damage. J Appl Mech 12(3), A159–A164 (1945)

    Google Scholar 

  5. Akbarzadeh, S., Khonsari, M.M: On the applicability of Miner’s rule to adhesive wear. Tribol. Lett. 63(2):29 (2016)

  6. Jalalahmadi, B., Sadeghi, F.: A Voronoi finite element study of fatigue life scatter in rolling contacts. J. Tribol. 131(2), 022203 (2009)

    Article  Google Scholar 

  7. Raje, N., et al.: A statistical damage mechanics model for subsurface initiated spalling in rolling contacts. J. Tribol. 130(4), 042201 (2008)

    Article  Google Scholar 

  8. Rosenfield, A.: A fracture mechanics approach to wear. Wear 61(1), 125–132 (1980)

    Article  Google Scholar 

  9. Beheshti, A., Khonsari, M.: On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect. Tribol. Int. 44(12), 1620–1628 (2011)

    Article  Google Scholar 

  10. Johnson, K.L., Johnson, K.L.: Contact mechanics (Cambridge University Press, Cambridge, 1987)

  11. Vázquez, J., et al.: Explicit equations for sub-surface stress field in plane contacts. Int. J. Mech. Sci.67, 53–58 (2013)

    Article  Google Scholar 

  12. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity (Springer, Dordrecht, 1977)

  13. Chidlow, S., et al.: A solution method for the sub-surface stresses and local deflection of a semi-infinite inhomogeneous elastic medium. Appl. Math. Model. 36(8), 3486–3501 (2012)

    Article  Google Scholar 

  14. Chidlow, S., et al.: Predicting the deflection and sub-surface stress field within two-dimensional inhomogeneously elastic bonded layered solids under pressure. Int. J. Solids Struct .48(22–23), 3243–3256 (2011)

    Article  Google Scholar 

  15. Hamilton, G., Goodman, L.: The stress field created by a circular sliding contact. J. Appl. Mech. 33(2), 371–376 (1966)

    Article  Google Scholar 

  16. Hanson, M., Johnson, T.: The elastic field for spherical Hertzian contact of isotropic bodies revisited: some alternative expressions. J. Tribol. 115(2), 327–332 (1993)

    Article  Google Scholar 

  17. Arakere, N.K., et al.: Subsurface stress fields in face-centered-cubic single-crystal anisotropic contacts. J. Eng. Gas Turbines Power 128(4), 879–888 (2006)

    Article  CAS  Google Scholar 

  18. Bray, D.E., Tang, W.: Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave. Nucl. Eng. Des. 207(2), 231–240 (2001)

    Article  CAS  Google Scholar 

  19. Kartal, M., et al.: Determination of sub-surface stresses at inclusions in single crystal superalloy using HR-EBSD, crystal plasticity and inverse eigenstrain analysis. Int. J. Solids Struct. 67, 27–39 (2015)

    Article  Google Scholar 

  20. Anoop, A.D., et al.: Numerical evaluation of subsurface stress field under elastohydrodynamic line contact for AISI 52100 bearing steel with retained austenite. Wear 330–331, 636–642 (2015)

    Article  Google Scholar 

  21. Lijesh, K.P., Khonsari, M.M.: On the integrated degradation coefficient for adhesive wear: a thermodynamic approach. Wear 48, 138–150 (2018)

    Article  Google Scholar 

  22. Lijesh, K.P., Khonsari, M.M.: On the modeling of adhesive wear with consideration of loading sequence. Tribol. Lett. 66, 13–23 (2018)

    Article  Google Scholar 

  23. Fereidouni, H., Akbarzadeh, S., Khonsari, M.M.: On the assessment of variable loading in adhesive wear. Tribol. Int. 129, 167–176 (2019)

    Article  Google Scholar 

  24. Budynas, R.G., Nisbett, J.K.: Shigley's Mechanical Engineering Design (McGraw-Hill, New York, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Khonsari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Governing Equations for Substress Field in Cylindrical and Spherical Contacts

1.1.1 Cylindrical Contact

A schematic view of the contact of two elastic cylindrically shaped bodies is shown in Fig. 14 in Appendix. The contact area of two cylinders is a rectangle of length L and width of 2b. The half-width of b is given by [24]:

Fig. 14
figure 14

Cylindrical contact

$$b=\sqrt{\frac{4F\left[\frac{1-{\upsilon }_{1}^{2}}{{E}_{1}}+\frac{1-{\upsilon }_{2}^{2}}{{E}_{2}}\right]}{\pi L\left(\frac{1}{{R}_{1}}+\frac{1}{{R}_{2}}\right)}}$$
(A1)

where E1 and E2 are moduli of elasticity, ν1 and ν2 are the Poisson’s ratios for cylinders 1 and 2, respectively, and L is the length of the contact area.

The equations for calculation of subsurface stress in a half-space loaded by a normal pressure p(s) and shear loading q(s) are [10]:

$${\sigma }_{xx}=-\frac{2z}{\pi }\int \frac{p\left(s\right){\left(x-s\right)}^{2}{\text{d}}s}{{\left\{{\left(x-s\right)}^{2}+{z}^{2}\right\}}^{2}}-\frac{2}{\pi }\int \frac{q\left(s\right){\left(x-s\right)}^{3}{\text{d}}s}{{\left\{{\left(x-s\right)}^{2}+{z}^{2}\right\}}^{2}}$$
(A2)
$${\sigma }_{zz}=-\frac{2{z}^{3}}{\pi }\int \frac{p\left(s\right){\text{d}}s}{{\left\{{\left(x-s\right)}^{2}+{z}^{2}\right\}}^{2}}-\frac{2{z}^{2}}{\pi }\int \frac{q\left(s\right)\left(x-s\right)ds}{{\left\{{\left(x-s\right)}^{2}+{z}^{2}\right\}}^{2}}$$
(A3)
$${\tau }_{xz}=-\frac{2{z}^{2}}{\pi }\int \frac{p\left(s\right)\left(x-s\right)ds}{{\left\{{\left(x-s\right)}^{2}+{z}^{2}\right\}}^{2}}-\frac{2z}{\pi }\int \frac{q\left(s\right){\left(x-s\right)}^{2}{\text{d}}s}{{\left\{{\left(x-s\right)}^{2}+{z}^{2}\right\}}^{2}}$$
(A4)

where for semi-elliptic pressure distribution in cylindrical contact, p(s) and q(s) are given by:

$$p(s)=\frac{2F}{\pi bL}\sqrt{1-\frac{{(x-s)}^{2}}{{b}^{2}}}$$
(A5)
$$q(s)=\frac{2\mu F}{\pi bL}\sqrt{1-\frac{{(x-s)}^{2}}{{b}^{2}}}$$
(A6)

where F is the applied load and μ is the friction coefficient. Maximum pressure \({p}_{0}=\frac{2F}{\pi bL}\) occurs at x = 0.

By substituting Eqs. (A5) and (A6) into Eqs. (A2) to (A4) and integrating the results, the following expressions for the subsurface stresses are obtained:

$$\begin{aligned} \sigma _{{xx}}^{{cy}} (x,z) = & \left. {\frac{{2F}}{{\pi bL}}\left[ {\frac{{ - 2z}}{{\pi b}}{\text{sin}}^{{ - 1}} \left( {\frac{{s - x}}{b}} \right) + \frac{{2z^{2} + b^{2} }}{{\pi b\sqrt {z^{2} + b^{2} } }}{\text{tan}}^{{ - 1}} \left( {\frac{{\sqrt {z^{2} + b^{2} } \left( {s - x} \right)}}{{bz\sqrt {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} }}} \right) - \frac{{z(s - x)}}{{\pi \sqrt {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} (\frac{{\left( {z^{2} + b^{2} } \right)\left( {s - x} \right)^{2} }}{{b^{2} \left( {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} \right)}} + z^{2} )}}} \right]} \right|_{{ - b}}^{b} \\ & + \left. {\frac{{2\mu F}}{{\pi bL}}\left[ \begin{gathered} \frac{{\left( {z^{4} + \left( { - z^{2} - b^{2} } \right)\left( {2z^{2} + b^{2} } \right) + 2b^{2} z^{2} + b^{4} } \right){\text{ln}}\left( {\frac{{\sqrt {b^{2} - \left( {s - x} \right)^{2} } + \sqrt {z^{2} + b^{2} } }}{{\left| {\sqrt {b^{2} - \left( {s - x} \right)^{2} } - \sqrt {z^{2} + b^{2} } } \right|}}} \right)}}{{2\pi b\sqrt {z^{6} + 3b^{2} z^{4} + 3b^{4} z^{2} + b^{6} } }} - \frac{{(2z^{2} + b^{2} )ln\left( {\frac{{\left| {\sqrt {b^{2} - \left( {s - x} \right)^{2} } - \sqrt {z^{2} + b^{2} } } \right|}}{{\sqrt {b^{2} - \left( {s - x} \right)^{2} } + \sqrt {z^{2} + b^{2} } }}} \right)}}{{\pi b\sqrt {z^{2} + b^{2} } }} \hfill \\ + \frac{{\left( { - z^{4} - \left( { - z^{2} - b^{2} } \right)\left( {2z^{2} + b^{2} } \right) - 2b^{2} z^{2} - b^{4} } \right)}}{{2\pi b\left( {z^{2} + b^{2} } \right)\sqrt {b^{2} - \left( {s - x} \right)^{2} } + 2\pi b\sqrt {(z^{2} + b^{2} )^{3} } }} + \frac{{\left( { - z^{4} - \left( { - z^{2} - b^{2} } \right)\left( {2z^{2} + b^{2} } \right) - 2b^{2} z^{2} - b^{4} } \right)}}{{2\pi b\left( {z^{2} + b^{2} } \right)\sqrt {b^{2} - \left( {s - x} \right)^{2} } - 2\pi b\sqrt {(z^{2} + b^{2} )^{3} } }} - \frac{{2\sqrt {b^{2} - \left( {s - x} \right)^{2} } }}{{\pi b}} \hfill \\ \end{gathered} \right]} \right|_{{ - b}}^{b} \\ \end{aligned}$$
(A7)
$$\begin{aligned} \sigma _{{zz}}^{{cy}} = & \left. {\frac{{2F}}{{\pi bL}}\left[ { - \frac{b}{{\pi \sqrt {z^{2} + b^{2} } }}{\text{tan}}^{{ - 1}} \left( {\frac{{\sqrt {z^{2} + b^{2} } \left( {s - x} \right)}}{{bz\sqrt {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} }}} \right) - \frac{{z(s - x)}}{{\pi \sqrt {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} (\frac{{\left( {z^{2} + b^{2} } \right)\left( {s - x} \right)^{2} }}{{b^{2} \left( {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} \right)}} + z^{2} )}}} \right]} \right|_{{ - b}}^{b} \\ & + \left. {\frac{{2\mu F}}{{\pi bL}}\left[ {\frac{{z^{2} \left( {z^{2} + b^{2} } \right){\text{ln}}\left( {\frac{{\sqrt {b^{2} - \left( {s - x} \right)^{2} } + \sqrt {z^{2} + b^{2} } }}{{\left| {\sqrt {b^{2} - \left( {s - x} \right)^{2} } - \sqrt {z^{2} + b^{2} } } \right|}}} \right)}}{{2\pi b\sqrt {z^{6} + 3b^{2} z^{4} + 3b^{4} z^{2} + b^{6} } }} + \frac{{z^{2} ln\left( {\frac{{\left| {\sqrt {b^{2} - \left( {s - x} \right)^{2} } - \sqrt {z^{2} + b^{2} } } \right|}}{{\sqrt {b^{2} - \left( {s - x} \right)^{2} } + \sqrt {z^{2} + b^{2} } }}} \right)}}{{\pi b\sqrt {z^{2} + b^{2} } }} - \frac{{z^{2} }}{{2\pi b\left( {\sqrt {b^{2} - \left( {s - x} \right)^{2} } + \sqrt {z^{2} + b^{2} } } \right)}} - \frac{{z^{2} }}{{2\pi b(\sqrt {b^{2} - \left( {s - x} \right)^{2} } - \sqrt {z^{2} + b^{2} } )}}} \right]} \right|_{{ - b}}^{b} \\ \end{aligned}$$
(A8)
$$\begin{aligned} \sigma _{{xz}}^{{cy}} (x,z) = & \left. {\frac{{2F}}{{\pi bL}}\left[ { - \frac{{\sqrt {z^{2} + b^{2} } }}{{\pi b}}{\text{tan}}^{{ - 1}} \left( {\frac{{\sqrt {z^{2} + b^{2} } \left( {s - x} \right)}}{{bz\sqrt {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} }}} \right) + \frac{z}{{\pi b}}{\text{sin}}^{{ - 1}} \left( {\frac{{s - x}}{b}} \right)} \right]} \right|_{{ - b}}^{b} \\ & + \left. {\frac{{2\mu F}}{{\pi bL}}\left[ {\frac{{ - 2z}}{{\pi b}}{\text{sin}}^{{ - 1}} \left( {\frac{{s - x}}{b}} \right) + \frac{{2z^{2} + b^{2} }}{{\pi b\sqrt {z^{2} + b^{2} } }}{\text{tan}}^{{ - 1}} \left( {\frac{{\sqrt {z^{2} + b^{2} } \left( {s - x} \right)}}{{bz\sqrt {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} }}} \right) - \frac{{z(s - x)}}{{\pi \sqrt {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} (\frac{{\left( {z^{2} + b^{2} } \right)\left( {s - x} \right)^{2} }}{{b^{2} \left( {1 - \frac{{\left( {x - s} \right)^{2} }}{{b^{2} }}} \right)}} + z^{2} )}}} \right]} \right|_{{ - b}}^{b} \\ \end{aligned}$$
(A9)

1.2 Spherical Contact

A general schematic of contact of two elastic bodies is illustrated in Fig. 15 in Appendix. The radius of the spherical contact area resulting in a semi-elliptic pressure distribution which is formed due to the applied loading is calculated from the theory of elasticity as [24]:

Fig. 15
figure 15

Spherical contact

$$a=\sqrt[3]{\frac{3F\left[\frac{1-{\upsilon }_{1}^{2}}{{E}_{1}}+\frac{1-{\upsilon }_{2}^{2}}{{E}_{2}}\right]}{4(\frac{1}{{R}_{1}}+\frac{1}{{R}_{2}})}}$$
(A10)

where E1 and E2 are moduli of elasticity for spheres 1 and 2 and ν1 and ν2 are the Poisson’s ratios.

For the contact with a sphere on the flat plate, the flat plate is considered as a sphere with an infinitely large radius (R1 = ∞).

On the surface where z = 0, the expression for pressure components reduces to the following.

$${P}_{zz}=\frac{3F}{2\pi {a}^{3}}\sqrt{{a}^{2}-{r}^{2}}$$
(A11)
$${P}_{xz}=\frac{3\mu F}{2\pi {a}^{3}}\sqrt{{a}^{2}-{r}^{2}}$$
(A12)
$$r=\sqrt{{x}^{2}+{y}^{2}} <a$$
(A13)

where μ is the friction coefficient, F is the applied load, and a is the contact radius. The maximum contact pressure \({p}_{0}=\frac{3F}{2\pi {a}^{2}}\) occurs at the center of circular contact r = 0. Figure 16 in Appendix shows a schematic view of the pressure distribution.

Fig. 16
figure 16

Schematic view of pressure distribution in spherical contact

As a result of loading, subsurface stresses are created inside the contacting bodies. Subsurface stresses for spherical contact of isotropic bodies for normal loading are given by [16]:

$${\sigma }_{xx}=\frac{3F}{2\pi {a}^{3}}\left[2(1+\upsilon )zarcsin\left(\frac{{J}_{1}}{r}\right)-\left(1+2\upsilon \right)\sqrt{{a}^{2}-{{J}_{1}}^{2}}-\frac{za\sqrt{{{J}_{2}}^{2}-{a}^{2}}}{{{J}_{2}}^{2}-{{J}_{1}}^{2}}\right]$$
(A14)
$${\sigma }_{zz}=-\frac{3F}{2\pi {a}^{3}}\left[\frac{\sqrt[3]{{(a}^{2}-{{{J}_{1}}^{2})}^{2}}}{{{J}_{2}}^{2}-{{J}_{1}}^{2}}\right]$$
(A15)
$${\sigma }_{xz}=\left|\frac{{\sigma }_{zz}-{\sigma }_{xx}}{2}\right|$$
(A16)

where parameters of J1 and J3 are denoted as:

$${J}_{1}=\frac{1}{2}\left[\sqrt{{\left(r+a\right)}^{2}+{z}^{2}}-\sqrt{{\left(r-a\right)}^{2}+{z}^{2}}\right]$$
(A17)
$${J}_{2}=\frac{1}{2}\left[\sqrt{{(r+a)}^{2}+{z}^{2}}+\sqrt{{(r-a)}^{2}+{z}^{2}}\right]$$
(A18)

Subsurface stresses for spherical contact of isotropic bodies for shear loading are given by [16]:

$${\sigma{^\prime}}_{xx}=\frac{3F}{2\pi {a}^{3}}(\mu cos\theta )r\left[\left(1+\upsilon \right)\left(-\mathrm{arcsin}\left(\frac{{J}_{1}}{r}\right)+\frac{{J}_{1}}{{r}^{2}}\sqrt{{r}^{2}-{{J}_{1}}^{2}}\right)+z{{J}_{1}}^{2}\frac{\sqrt{{a}^{2}-{{J}_{1}}^{2}}}{{r}^{2}({{J}_{2}}^{2}-{{J}_{1}}^{2})}\right]$$
(A19)
$${\sigma {^\prime}}_{zz}=-\frac{3F}{2\pi {a}^{3}}(\mu cos\theta )\left[z{a}^{2}{J}_{1}\frac{\sqrt{{{J}_{2}}^{2}-{r}^{2}}}{{{J}_{2}}^{2}({{J}_{2}}^{2}-{{J}_{1}}^{2})}\right]$$
(A20)
$${\sigma {^\prime}}_{xz}=\frac{3F}{4\pi {a}^{3}}\mu \left[3\mathrm{zarcsin}\left(\frac{{J}_{1}}{r}\right)-2\sqrt{{a}^{2}-{{J}_{1}}^{2}}-z{a}^{2}\frac{\sqrt{{r}^{2}-{{J}_{1}}^{2}}}{{{J}_{1}}^{2}\left({{J}_{2}}^{2}-{{J}_{1}}^{2}\right)}-{e}^{-2i\theta }z{{J}_{1}}^{3}\frac{\sqrt{{r}^{2}-{{J}_{1}}^{2}}}{{r}^{2}\left({{J}_{2}}^{2}-{{J}_{1}}^{2}\right)}\right]$$
(A21)

where θ is the polar angle. In the case when a normal, as well as shear loading, is applied, the subsurface stresses are calculated as:

$${\sigma }_{xx}^{sp}={\sigma }_{xx}+{{\sigma }^{^{\prime}}}_{xx}$$
(A22)
$${\sigma }_{zz}^{sp}={\sigma }_{zz}+{{\sigma }^{^{\prime}}}_{zz}$$
(A23)
$${\sigma }_{xz}^{sp}={\sigma }_{xz}+{\sigma{^{\prime}}}_{xz}$$
(A24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fereidouni, H., Akbarzadeh, S. & Khonsari, M.M. The Relation Between Subsurface Stresses and Useful Wear Life in Sliding Contacts. Tribol Lett 68, 9 (2020). https://doi.org/10.1007/s11249-019-1246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1246-8

Keywords

Navigation