Skip to main content
Log in

Poly (lactide-co-glycolide)-based nanocomposite reinforced by a novel hybrid nanohydroxyapatite

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To obtain a high-performance poly(lactide-co-glycolide) (PLGA)-based composite, a novel functionalized hybrid nanohyoxyapatite (n-HA) was proposed by introducing carboxymethyl-β-cyclodextrin (CMCD) and zoledronic acid (ZA). IR, XRD, TGA, dispersion experiments for hybrid n-HA and universal testing machine, SEM, DSC, POM for the hybrid n-HA/PLGA composite were carried out. The results showed that initial adjusted pH = 11 was more favor for the grafting rate of CMCD, and ZA was preferentially grafted on n-HA surface due to stronger binding ability to Ca2+. The high content of CMCD and ZA of 40%CMCD-10%ZA-n-HA could be well dispersed in organic solvents, which could effectively promote crystallization, so that CMCD-ZA-n-HA displayed the best reinforce effect for PLGA, whose tensile strength and elongation at break were 16.20 and 41.99% higher than PLGA, respectively. In vitro soaking in simulated body fluid (SBF) and cell proliferation results demonstrated that CMCD-ZA-n-HA endowed PLGA with faster degradation, better bone-like apatite deposition and cells adhesion and proliferation ability. The study would provide a new simply method to obtain a functionalized hybrid n-HA, which had a great potential to obtain ideal n-HA/PLGA composite used in the bone materials field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. WeiMaX SJXL et al (2020) Biodegradable materials for bone defect repair. Mil Med Res 7:1–25

    Google Scholar 

  2. Clegg JR, Wagner AM, Shin SR et al (2019) Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Prog Mater Sci 106:100589

    Article  CAS  Google Scholar 

  3. Goncalves EM, Oliveira FJ, Silva RF et al (2016) Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res Part B Appl Biomater 104:1210–1219

    Article  CAS  Google Scholar 

  4. Jin FL, Hu RR, Park SJ (2019) Improvement of thermal behaviors of biodegradable poly (lactic acid) polymer: a review. Compos Part B-Eng 164:287–296

    Article  CAS  Google Scholar 

  5. Ding D, Zhu Q (2018) Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mat Sci Eng C-Mater 92:1041–1060

    Article  CAS  Google Scholar 

  6. Tang YJ, Zhao H, Yao JH et al (2019) A doxorubicin and vincristine drug release system based on magnetic PLGA microspheres prepared by coaxial electrospray. J Mater Sci 54:9689–9706

    Article  CAS  Google Scholar 

  7. Shen SJ, Jian ZY, Huang LS et al (2015) Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration. Int J Nanomed 10:3815–3827

    Google Scholar 

  8. dos Santos TMBK, Merlini C, Aragones A et al (2019) Manufacturing and characterization of plates for fracture fixation of bone with biocomposites of poly (lactic acid-co-glycolic acid) (PLGA) with calcium phosphates bioceramics. Mat Sci Eng C-Mater 109:109728

    Article  Google Scholar 

  9. Szczes A, Holysz L, Chibowski E (2017) Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 249:321–330

    Article  CAS  Google Scholar 

  10. Fan CQ, Li JS, Xu GH et al (2010) Facile fabrication of nano-hydroxyapatite/silk fibroin composite via a simplified coprecipitation route. J Mater Sci 45:5814–5819

    Article  CAS  Google Scholar 

  11. Chen WD, Nichols L, Teer L et al (2022) A hybrid coating of polydopamine and nano-hydroxyapatite enhances surface properties of 3D printed poly(lactic-co-glycolic acid) scaffolds. J Mater Sci 57:13011–13026

    Article  CAS  Google Scholar 

  12. Jiang LY, Xiong CD, Jiang LX et al (2014) Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite. Compos Sci Technol 93:61–67

    Article  CAS  Google Scholar 

  13. Rodriguez DE, Guiza-ArguelloV OOO et al (2016) Development of a hydroxyapatite-poly(D, L-lactide-co-glycolide) infiltrated carbon foam for orthopedic applications. Carbon 98:106–114

    Article  CAS  Google Scholar 

  14. Park JW, Hwang JU, Back JH et al (2019) High strength PLGA/Hydroxyapatite composites with tunable surface structure using PLGA direct, grafting method for orthopedic implants. Compos B 178:107449

    Article  CAS  Google Scholar 

  15. Mao DY, Li Q, Bai NN et al (2018) Porous stable poly (lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohyd Polym 180:104–111

    Article  CAS  Google Scholar 

  16. Musilova L, Mracek A, Kovalcik A et al (2018) Hyaluronan hydrogels modified by glycinated Kraft lignin: morphology, swelling, viscoelastic properties and biocompatibility. Carbohyd Polym 181:394–403

    Article  CAS  Google Scholar 

  17. Ding HJ, Jiang LY, Ma BL et al (2018) Preparation of a highly dispersed nano-hydroxyapatite by a new surfacemodificationstrategy used for a reinforce filler for poly(lactic-co-glycolide). Ind Eng Chem Res 57:17119–17128

    Article  Google Scholar 

  18. Zhang ZB, Liu AB, Fan JD et al (2023) A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn–1Mg porous scaffolds as biodegradable bone implants. Bioact Mater 7:488–504

    Google Scholar 

  19. Chauhan P, Srivastava A, Bhati P et al (2023) Enhanced osseointegration of drug eluting nanotubular dental implants: an in vitro and in vivo study. Bioact Mater 28:432–447

    CAS  Google Scholar 

  20. Dhillon S (2016) Zoledronic acid (Reclast®, Aclasta®): a review in osteoporosis. Drugs 76:1683–1697

    Article  CAS  Google Scholar 

  21. Wang B, Zhan Y, Yan L et al (2022) How zoledronic acid improves osteoporosis by acting on osteoclasts. Front Pharmacol 13:961941

    Article  CAS  Google Scholar 

  22. Khajuria DK, Razdan R, Mahapatra DR (2015) Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteoporosis in animal model. Eur J Pharm Sci 66:173–183

    Article  CAS  Google Scholar 

  23. Neamtu J, Bubulica MV, Rotaru A et al (2017) Hydroxyapatite–alendronate composite systems for biocompatible materials. J Therm Anal Calorim 127:1567–1582

    Article  CAS  Google Scholar 

  24. Lu Y, Li M, Li LH et al (2018) High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition, bone repair and infection eradication. Mater Sci Eng C-Mater 82:225–233

    Article  CAS  Google Scholar 

  25. Wang LS, Zhang ZP, Chen HC et al (2010) Preparation and characterization of biodegradable thermoplastic elastomers (PLCA/PLGA blends). J Polym Res 17:77–82

    Article  Google Scholar 

  26. Gong JM, Han XM, Zhu XL et al (2014) Layer-by-layer assembled multilayer films of exfoliated layered double hydroxide and carboxymethyl-β-cyclodextrin for selective capacitive sensing of acephatemet. Biosens Bioelectron 61:379–385

    Article  CAS  Google Scholar 

  27. Ali AF, Alrowaili ZA, El-Giar EM et al (2021) Novel green synthesis of hydroxyapatite uniform nanorods via microwave-hydrothermal route using licorice root extract as template. Ceram Inter 47:3928–3937

    Article  CAS  Google Scholar 

  28. Dey S, Das M, Balla VK (2014) Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer hct116 cells. Mater Sci Eng C 39:336–339

    Article  CAS  Google Scholar 

  29. Deng H, Wang YM, Zhou Y et al (2023) In vitro and in vivo evaluation of folic acid modified DOX-loaded 32P-nHA nanoparticles in prostate cancer therapy. Int J Nanomed 18:2003–2015

    Article  CAS  Google Scholar 

  30. Ding HJ, Jiang LY, Tang CY et al (2021) Study on the surface-modification of nano-hydroxyapatite with lignin and the corresponding nanocomposite with poly (lactide-co-glycolide). Chem Sci Eng 15:630–642

    CAS  Google Scholar 

  31. Dessou NS, Theodorou GS, Kantiranis N et al (2017) Influence of strontium for calcium substitution on the glass–ceramic network and biomimetic behavior in the ternary system SiO2–CaO–MgO. J Mater Sci 52:8871–8885

    Article  CAS  Google Scholar 

  32. Tang S, Jiang LY, Ma BL et al (2020) Preparation and characterization of bamboo fifiber/chitosan/nano hydroxyapatite composite membrane by ionic crosslinking. Cellulose 27:5089–5100

    Article  CAS  Google Scholar 

  33. Buzarovska A, Dinescu S, Chitoiu L et al (2018) Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: properties, cytocompatibility and drug release capability. J Mater Sci 53:11151–11166

    Article  CAS  Google Scholar 

  34. Uzwalkiran Rokkala U, Bontha S, Ramesh MR et al (2023) Influence of friction stir processing on microstructure, mechanical properties and corrosion behaviour of Mg-Zn-Dy alloy. J Mater Sci 58:2893–2914

    Article  Google Scholar 

  35. Azzaoui K, Mejdoubi E, Lamhamdi A et al (2017) Preparation and characterization of biodegradable nanocomposites derived from carboxymethyl cellulose and hydroxyapatite. Carbohyd Polym 167:59–69

    Article  CAS  Google Scholar 

  36. Jia F, Ruan LF, Du CC et al (2023) The nanoformula of zoledronic acid and calcium carbonate targets osteoclasts and reverses osteoporosis. Biomaterials 296:122059

    Article  CAS  Google Scholar 

  37. Ding HJ, Jiang LY, Ma BL et al (2019) Synthesis of a novel co-hybridization nano-apatite powder with excellent dispersion, well-solubility and good biocompatibility by a new strategy. Adv Powder Technol 30:485–492

    Article  CAS  Google Scholar 

  38. Akindoyo JO, Beg MDH, Ghazali S et al (2017) Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanicalproperties of injection molded PLA-hydroxyapatite composites. Compos Part A-Appl S 103:96–105

    Article  CAS  Google Scholar 

  39. Li Y, Jiang LY, Xiong CD et al (2015) Effect of different surface treatment for bamboo fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/ poly(lactic-co-glycolic) composite. Ind Eng Chem Res 54:12017–12024

    Article  CAS  Google Scholar 

  40. Qi J, Xiao JP, Zhang TY et al (2021) Investigation of the nano-hydroxyapatite with different surface modifications on the properties of poly(lactide-co-glycolide acid)/poly(trimethylene carbonate)/nano-hydroxyapatite composites. Colloid Polym Sci 299:623–635

    Article  CAS  Google Scholar 

  41. Tang CY, Ding HJ, Tang S et al (2020) A combined-modification method of carboxymethyl β-cyclodextrin and lignin for nano-hydroxyapatite to reinforce poly(lactide-co-glycolide) for bone materials. Int J Biol Macromol 160:142–152

    Article  CAS  Google Scholar 

  42. Jiang LY, Xiong CD, Jiang LX et al (2013) Effect of HA with different grain size range on the crystallization behaviors andmechanical property of HA/PLGA composite. Thermochim Acta 565:52–57

    Article  CAS  Google Scholar 

  43. Vermeer J, Renders G, van Duin MA et al (2017) Bone-site-specific responses to zoledronic acid. Oral Dis 23:126–133

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Postgraduate Scientific Research Innovation Project of Hunan Province (CX20230518).

Funding

Postgraduate Scientific Research Innovation Project of Hunan Province, CX20230518, Shuo Tang.

Author information

Authors and Affiliations

Authors

Contributions

LJ and YM conceived and designed the experiments. YM performed the experiments including fabrication and analysis. ST, LJ, YZ and SS wrote the paper.

Corresponding authors

Correspondence to Liuyun Jiang or Yan Zhang.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Ma, Y., Tang, S. et al. Poly (lactide-co-glycolide)-based nanocomposite reinforced by a novel hybrid nanohydroxyapatite. J Mater Sci 58, 16954–16971 (2023). https://doi.org/10.1007/s10853-023-09096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09096-w

Navigation