Skip to main content

Advertisement

Log in

A comparative insight into the mechanical properties, antibacterial potential, and cytotoxicity profile of nano-hydroxyapatite and nano-whitlockite-incorporated poly-L-lactic acid for bone tissue engineering

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This work reports the synthesis and characterization of nanohydroxyapatite (nHA) and nanowhitlockite (nWH), which were further incorporated to poly-l-lactic acid (PLLA) to study their effects on the structure, mechanical properties, antibacterial potential, and cytotoxicity of PLLA. SEM images of PLLA–nHA and PLLA–nWH revealed uniform dispersion of nanoparticles in polymer. FTIR spectroscopy showed shift in functional group position and indicated transformation of PLLA α′ to more crystalline PLLA α, which was further confirmed by X-ray diffraction. The mechanical properties of the materials showed that addition of nanoparticles have made PLLA ductile and strong pertaining to the effective dissipation of loads across the interfaces, enabling them to delay the crack growth by avoiding stress concentration sites. PLLA–nWH10% showed the highest antibacterial activity against Gram-positive bacteria Listeria monocytogenes and Staphylococcus aureus. In vitro cytocompatibility of PLLA–nWH10% was highest, 98%, at day 7 against fibroblasts MC3T3-E1 (osteoblastic cell line), whereas all nanocomposites have enhanced cell viability (94%) as compared to pure PLLA. Alizarin red assay showed twofold increase in calcification at day 14 with PLLA–nWH as compared to PLLA–nHA. It was clearly observed that binary system PLLA–nWH at all concentrations had good dispersion and interfacial interaction resulting in improved mechanical and enhanced osteoconductive properties as compared to PLLA–nHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time, as the data also forms part of an ongoing study.

References

  • Ain QU, Khan ANJPC (2018) Fabrication and characterization of bio-inspired polymer blends and hybrid composites based on collagen-type II, polyethylene glycol-dimethacrylate and hydroxyapatite. Polym Compos 39:E550–E560

    Article  CAS  Google Scholar 

  • Ain QU et al (2017) Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications. Mater Sci Eng C 75:807–815

    Article  CAS  Google Scholar 

  • Akindoyo JO et al (2019) Synergized poly(lactic acid)–hydroxyapatite composites: biocompatibility study. J Appl Polym Sci 136(15):47400

    Article  Google Scholar 

  • Alharbi HF et al (2018) Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering. Eur Polym J 98:483–491

    Article  CAS  Google Scholar 

  • Alizadeh Sardroud H et al (2017) Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation. J Microencapsul 34(5):488–497

    Article  CAS  Google Scholar 

  • Amin S et al (2015) Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors. J Chem Soc Pak 37(1):79–85

    CAS  Google Scholar 

  • Athanasoulia I-GI et al (2017) The effect of hydroxyapatite nanoparticles on crystallization and thermomechanical properties of PLLA matrix. Pure Appl Chem 89(1):125–140

    Article  CAS  Google Scholar 

  • Beltrán F et al (2016) Water-induced structural changes in poly (lactic acid) and PLLA-clay nanocomposites. Polymer 107:211–222

    Article  Google Scholar 

  • Bhasney SM et al (2019) Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite. Compos Sci Technol 171:54–61

    Article  CAS  Google Scholar 

  • Capitelli F et al (2021) Neutron and XRD single-crystal diffraction study and vibrational properties of whitlockite, the natural counterpart of synthetic tricalcium phosphate. Curr Comput-Aided Drug Des 11(3):225

    CAS  Google Scholar 

  • Chakrapani VY et al (2017) Electrospun cytocompatible polycaprolactone blend composite with enhanced wettability for bone tissue engineering. J Nanosci Nanotechnol 17(4):2320–2328

    Article  CAS  Google Scholar 

  • Chandran RR et al (2020) Evaluation of whitlockite through conventional hydrothermal method and its in-vitro erythrocyte compatibility and antibacterial activity. In: AIP conference proceedings, AIP Publishing LLC

  • Chatterjee K et al (2010) The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 31(19):5051–5062

    Article  CAS  Google Scholar 

  • Chen YC et al (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22(10):2027–2039

    Article  CAS  Google Scholar 

  • Cheng H et al (2018) Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater 69:342–351

    Article  CAS  Google Scholar 

  • Christy PN et al (2020) Biopolymeric nanocomposite scaffolds for bone tissue engineering applications–a review. J Drug Deliv Sci Technol 55:101452

    Article  CAS  Google Scholar 

  • Cooper MA et al (2013) Wopmayite, ideally Ca6Na3 Mn (PO4)3 (PO3OH)4, a new phosphate mineral from the Tanco Mine, Bernic Lake, Manitoba: description and crystal structure. Can Mineral 51(1):93–106

    Article  CAS  Google Scholar 

  • Danoux CB et al (2014) In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter 4(1):e27664

    Article  Google Scholar 

  • Davachi SM et al (2016) In-vitro investigation and hydrolytic degradation of antibacterial nanocomposites based on PLLA/triclosan/nano-hydroxyapatite. Polymer 83:101–110

    Article  CAS  Google Scholar 

  • Davoodi S et al (2016) Preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications. RSC Adv 6(46):39870–39882

    Article  CAS  Google Scholar 

  • Díaz E et al (2014) In vitro degradation of PLLA/nHA composite scaffolds. Polym Eng Sci 54(11):2571–2578

    Article  Google Scholar 

  • Díaz E et al (2019) PLLA/nHA composite films and scaffolds for medical implants: in vitro degradation, thermal and mechanical properties. J Inorg Organomet Polym Mater 29(1):121–131

    Article  Google Scholar 

  • Doosti-Telgerd M et al (2020) Nanofibrous scaffolds containing hydroxyapatite and microfluidic-prepared polyamidoamin/BMP-2 plasmid dendriplexes for bone tissue engineering applications. Int J Nanomedicine 15:2633

    Article  CAS  Google Scholar 

  • Dyke JC et al (2012) An investigation of siloxane cross-linked hydroxyapatite–gelatin/copolymer composites for potential orthopedic applications. J Mater Chem 22(43):22888–22898

    Article  CAS  Google Scholar 

  • Eftekhari S et al (2014) Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Mater Sci Eng C 39:120–125

    Article  CAS  Google Scholar 

  • Farokhi M et al (2018) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 36(1):68–91

    Article  CAS  Google Scholar 

  • Gieroba B et al (2021) Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging. Mater Sci Eng C 119:111634

    Article  CAS  Google Scholar 

  • Gunja NJ, Athanasiou KA (2010) Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds. J Biomed Mater Res Part A 92(3):896–905

    Google Scholar 

  • Harb SV et al (2020) Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Mater Sci Eng C 116:111149

    Article  CAS  Google Scholar 

  • Hassan MI, Sultana N (2017) Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech 7(4):1–9

    Article  Google Scholar 

  • Hickey DJ (2014) MgO nanocomposites as antibacterial biomaterials for orthopedic tissue engineering. Northeastern University, Boston

  • Hickey DJ et al (2014) MgO nanocomposites as new antibacterial materials for orthopedic tissue engineering applications. In: 2014 40th Annual northeast bioengineering conference (NEBEC), IEEE

  • Hickey DJ et al (2015) Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater 14:175–184

    Article  CAS  Google Scholar 

  • Hu X, Zhang W, Hou D (2020) Synthesis, microstructure and mechanical properties of tricalcium phosphate–hydroxyapatite (TCP/HA) composite ceramic. Ceram Int 46(7):9810–9816

    Article  CAS  Google Scholar 

  • Izadpanahi M et al (2018) Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway. Mater Sci Eng C 93:686–703

    Article  CAS  Google Scholar 

  • Jang HL et al (2014) Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 8(1):634–641

    Article  CAS  Google Scholar 

  • Jang HL et al (2015) Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. J Mater Chem B 3(7):1342–1349

    Article  CAS  Google Scholar 

  • Jang HL et al (2016) In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv Healthc Mater 5(1):128–136

    Article  CAS  Google Scholar 

  • Jin Y-Z et al (2019) Whitlockite promotes bone healing in rabbit ilium defect model. J Med Biol Eng 39(6):944–951

    Article  Google Scholar 

  • Kaliannagounder VK et al (2021) Remotely controlled self-powering electrical stimulators for osteogenic differentiation using bone inspired bioactive piezoelectric whitlockite nanoparticles. Nano Energy 85:105901

    Article  CAS  Google Scholar 

  • Kanani AG, Bahrami SH (2010) Review on electrospun nanofibers scaffold and biomedical applications. Trends Biomater Artif Organs 24(2):93–115

    Google Scholar 

  • Kaya I et al (2019) Three dimensional printing and biomaterials in the repairment of bone defects; hydroxyapatite PLA filaments. Turk J Med Sci 49(3):922–927

    Article  CAS  Google Scholar 

  • Kim HD et al (2017) Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 112:31–43

    Article  CAS  Google Scholar 

  • Kim I et al (2019) Osteogenic effects of VEGF-overexpressed human adipose-derived stem cells with whitlockite reinforced cryogel for bone regeneration. Macromol Biosci 19(5):1800460

    Article  Google Scholar 

  • Klinkaewnarong J, Utara S (2018) Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles. Ultrason Sonochemistry 46:18–25

    Article  CAS  Google Scholar 

  • Kraehenbuehl TP et al (2008) Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29(18):2757–2766

    Article  CAS  Google Scholar 

  • Kumar S et al (2020) Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: a bone substitute material for load bearing applications. Ceram Int 46(10):16235–16248

    Article  CAS  Google Scholar 

  • Li S et al (2015) Structural changes and crystallization kinetics of polylactide under CO2 investigated using high-pressure Fourier transform infrared spectroscopy. Polym Int 64(12):1762–1769

    Article  CAS  Google Scholar 

  • Meaurio E, López-Rodríguez N, Sarasua J (2006a) Infrared spectrum of poly (L-lactide): application to crystallinity studies. Macromolecules 39(26):9291–9301

    Article  CAS  Google Scholar 

  • Meaurio E et al (2006b) Conformational behavior of poly (L-lactide) studied by infrared spectroscopy. J Phys Chem B 110(11):5790–5800

    Article  CAS  Google Scholar 

  • Mohseni M et al (2018) Assessment of tricalcium phosphate/collagen (TCP/collagene) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif Cells Nanomedicine Biotechnol 46(2):242–249

    Article  CAS  Google Scholar 

  • Mondal S et al (2020) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int 46(3):3443–3455

    Article  CAS  Google Scholar 

  • Muthiah Pillai NS et al (2019) Injectable nano whitlockite incorporated chitosan hydrogel for effective hemostasis. ACS Appl Bio Mater 2(2):865–873

    Article  CAS  Google Scholar 

  • Nabavinia M, Khoshfetrat AB, Naderi-Meshkin H (2019) Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater Sci Eng C 97:67–77

    Article  CAS  Google Scholar 

  • Nazeer MA, Yilgör E, Yilgör I (2017) Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications. Carbohydr Polym 175:38–46

    Article  CAS  Google Scholar 

  • Nazir F, Iqbal M (2020) Synthesis, characterization and cytotoxicity studies of aminated microcrystalline cellulose derivatives against melanoma and breast cancer cell lines. Polymers 12(11):2634

    Article  CAS  Google Scholar 

  • Nazir F et al (2021a) Fabrication of robust poly L-lactic acid/cyclic olefinic copolymer (PLLA/COC) blends: study of physical properties, structure, and cytocompatibility for bone tissue engineering. J Mater Res Technol 13:1732–1751

    Article  CAS  Google Scholar 

  • Nazir F et al (2021b) 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: in vitro and in vivo studies 185:419-433

  • Nie W et al (2017) Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 116:325–337

    Article  CAS  Google Scholar 

  • Nosrati H et al (2020a) Nucleation and growth of brushite crystals on the graphene sheets applicable in bone cement. Boletín de la Sociedad Española de Cerámica y Vidrio 2020. https://doi.org/10.1016/j.bsecv.2020.05.001.

  • Nosrati H et al (2020b) Statistical evaluation of nano-structured hydroxyapatite mechanical characteristics by employing the Vickers indentation technique. Ceram Int 46(12):20081–20087

    Article  CAS  Google Scholar 

  • Nosrati H et al (2020c) Gas injection approach for synthesis of hydroxyapatite nanorods via hydrothermal method. Mater Charact 159:110071

    Article  CAS  Google Scholar 

  • Nosrati H et al (2020d) Evaluation of argon-gas-injected solvothermal synthesis of hydroxyapatite crystals followed by high-frequency induction heat sintering. Cryst Growth Des 20(5):3182–3189

    Article  CAS  Google Scholar 

  • Oner FK, Alakent B, Soyer-Uzun S (2021) Effect of silane A-174 modifications in the structure, chemistry, and compressive strength of PLA-HAP and PLA-β-TCP biocomposites: toward the design of polymer-ceramic implants with high performance. ACS Appl Polym Mater 3(5):2432–2446

    Article  CAS  Google Scholar 

  • Ou C-F, Hsu M-C (2007) Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. J Polym Res 14(5):373–378

    Article  CAS  Google Scholar 

  • Oustadi F et al (2020) Genipin-crosslinked gelatin hydrogel incorporated with PLLA–nanocylinders as a bone scaffold: Synthesis, characterization, and mechanical properties evaluation. Polym Adv Technol 31(8):1783–1792

    Article  CAS  Google Scholar 

  • Oyama HT et al (2020) Environmentally safe bioadditive allows degradation of refractory poly (lactic acid) in seawater: effect of poly (aspartic acid-co-l-lactide) on the hydrolytic degradation of PLLA at different salinity and pH conditions. Polym Degrad Stab 178:109216

    Article  CAS  Google Scholar 

  • Passos MF et al (2016) PHEMA-PLLA semi-interpenetrating polymer networks: a study of their swelling kinetics, mechanical properties and cellular behavior. Eur Polym J 85:150–163

    Article  CAS  Google Scholar 

  • Pavia FC et al (2018) Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering. Int J Biol Macromol 119:945–953

    Article  Google Scholar 

  • Peng H et al (2016) Synthesis, swelling, degradation and cytocompatibility of crosslinked PLLA-PEG-PLLA networks with short PLLA blocks. Eur Polym J 84:448–464

    Article  CAS  Google Scholar 

  • Pitjamit S et al (2020) The possibility of interlocking nail fabrication from FFF 3D printing PLA/PCL/HA composites coated by local silk fibroin for canine bone fracture treatment. Materials 13(7):1564

    Article  CAS  Google Scholar 

  • Qi C et al (2015) Porous microspheres of magnesium whitlockite and amorphous calcium magnesium phosphate: microwave-assisted rapid synthesis using creatine phosphate, and application in drug delivery. J Mater Chem B 3(39):7775–7786

    Article  CAS  Google Scholar 

  • Raghavendran HRB et al (2014) A comparative study on in vitro osteogenic priming potential of electron spun scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for tissue engineering application. PLoS One 9(8):e104389

    Article  Google Scholar 

  • Raghavendran HRB et al (2021) The functionalization of the electrospun PLLA fibrous scaffolds reduces the hydrogen peroxide induced cytokines secretion in vitro. Mater Today Commun 26:101812

    Article  CAS  Google Scholar 

  • Righetti MC et al (2017) Contribution of the rigid amorphous fraction to physical ageing of semi-crystalline PLLA. Polymer 125:241–253

    Article  CAS  Google Scholar 

  • Righetti MC, Delpouve N, Saiter A (2018) Physical ageing of semi-crystalline PLLA: role of the differently constrained amorphous fractions. In: AIP conference proceedings, AIP Publishing LLC

  • Rodenas-Rochina J et al (2015) Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stab 119:121–131

    Article  CAS  Google Scholar 

  • Sharma C et al (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater Sci Eng C 64:416–427

    Article  CAS  Google Scholar 

  • Shuai C et al (2021) Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact Mater 6(2):490–502

    Article  CAS  Google Scholar 

  • Silver I, Murrills R, Etherington D (1988) Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 175(2):266–276

    Article  CAS  Google Scholar 

  • Sroka-Bartnicka A et al (2017) Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging. Spectrochim Acta Part A Mol Biomol Spectrosc 171:155–161

    Article  CAS  Google Scholar 

  • Szustakiewicz K et al (2018) Femtosecond laser-induced modification of PLLA/hydroxyapatite composite. Polym Degrad Stab 149:152–161

    Article  CAS  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508

    Article  CAS  Google Scholar 

  • Wang C et al (2020) Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. J Colloid Interface Sci 569:1–11

    Article  CAS  Google Scholar 

  • Wang T et al (2021) Three-dimensional printing of calcium carbonate/hydroxyapatite scaffolds at low temperature for bone tissue engineering. 3D Print Addit Manuf 8(1):1–13

    Article  Google Scholar 

  • Wijnhoven IB et al (2020) Analysis of cell-biomaterial interaction through cellular bridge formation in the interface between hGMSCs and CaP bioceramics. Sci Rep 10(1):1–14

    Google Scholar 

  • Wu Z et al (2020) Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. J Tissue Eng 11:2041731420967791

    Article  Google Scholar 

  • Yang W-F et al (2018) Surface-modified hydroxyapatite nanoparticle-reinforced polylactides for three-dimensional printed bone tissue engineering scaffolds. J Biomed Nanotechnol 14(2):294–303

    Article  CAS  Google Scholar 

  • Yang Y et al (2020) Magnesium-based whitlockite bone mineral promotes neural and osteogenic activities. ACS Biomater Sci Eng 6(10):5785–5796

    Article  CAS  Google Scholar 

  • Zhang J et al (2005) Crystal modifications and thermal behavior of poly (L-lactic acid) revealed by infrared spectroscopy. Macromolecules 38(19):8012–8021

    Article  CAS  Google Scholar 

  • Zhang H et al (2017) Crystallization behavior of poly (lactic acid) with a self-assembly aryl amide nucleating agent probed by real-time infrared spectroscopy and X-ray diffraction. Polym Test 64:12–19

    Article  CAS  Google Scholar 

  • Zhang D et al (2021) Core-shell poly (l-lactic acid)-hyaluronic acid nanofibers for cell culture and pelvic ligament tissue engineering. J Biomed Nanotechnol 17(3):399–406

    Article  CAS  Google Scholar 

  • Zhao L-S, Cai Y-H (2018) Studies of poly (L-lactic acid)/hydroxyapatite composites through DSC and XRD. In: IOP conference series: materials science and engineering, IOP Publishing

  • Zhou D et al (2017) Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int J Nanomedicine 12:2673

    Article  CAS  Google Scholar 

  • Zhu Y et al (2019) Poly (l-lactic acid)(PLLA) coatings with controllable hierarchical porous structures on magnesium substrate: an evaluation of corrosion behavior and cytocompatibility. ACS Appl Bio Mater 2(9):3843–3853

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Ali Khademhosseini (CNSI, UCLA, CA, USA) facilitated biological characterization at his laboratory in UCLA, which the authors gratefully acknowledge.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

FN: conceptualization, experimentation, software, writing—original draft preparation, writing—review and editing, MI: conceptualization, software, writing—original draft preparation, writing—review and editing, supervision, LA: writing—original draft preparation, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mudassir Iqbal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, F., Abbas, L. & Iqbal, M. A comparative insight into the mechanical properties, antibacterial potential, and cytotoxicity profile of nano-hydroxyapatite and nano-whitlockite-incorporated poly-L-lactic acid for bone tissue engineering. Appl Nanosci 12, 47–68 (2022). https://doi.org/10.1007/s13204-021-02223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02223-6

Keywords

Navigation